• Title/Summary/Keyword: Vortex height

Search Result 191, Processing Time 0.022 seconds

Numerical Study on Flow Characteristics at Blade Passage and Tip Clearance in a Linear Cascade of High Performance Turbine Blade

  • Myong, Hyon-Kook;Yang, Seung-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.606-616
    • /
    • 2003
  • A numerical analysis has been conducted in order to simulate the characteristics of complex flow through linear cascades of high performance turbine blade with/without tip clearance by using a pressure-correction based, generalized 3D incompressible Wavier-Stokes CFD code. The development and generation of horseshoe vortex, passage vortex, leakage vortex, tip vortex within tip clearance, etc. are clearly identified through the present simulation which uses the RNG k-$\varepsilon$ turbulent model with wall function method and a second-order linear upwind scheme for convective terms. The present simulation results are consistent with the generally known tendency that occurs in the blade passage and tip clearance. A 3D model for secondary and leakage flows through turbine cascades with/without tip clearance is also suggested from the present simulation results, including the effects of tip clearance height.

The Effect of Tip Clearance Height on the Three-Dimensional Flow and Aerodynamic Loss in the Wake Region of a High-Turning Turbine Rotor Cascade (끝틈새가 선회각이 큰 터빈 동익 익렬 후류영역에서의 3차원유동 및 압력손실에 미치는 영향)

  • Kwon, Hyun-Goo;Park, Jin-Jae;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.36-42
    • /
    • 2004
  • The effect of tip clearance height on the three-dimensional flow and aerodynamic loss in the wake region of a high-turning turbine rotor cascade has been investigated with a miniature cone-type five-hole probe. Distributions of velocity magnitude, secondary velocity vectors, and total-pressure loss coefficient are presented for three tip gap-to-span ratios of h/s = 0.0, 0.5 and 1.0 percent. The result shows that with the increment of h/s, tip leakage vortex tends to be intensified and aerodynamic loss due to the leakage vortex is increased as well. In the case of h/s = 1.0 percent, aerodynamic loss in the tip-leakage flow region is found dominant in comparison with that in the passage vortex region. With increasing h/s, mass-averaged secondary loss coefficient has a greater portion in the mass-averaged total-pressure loss coefficient.

Empirical numerical model of tornadic flow fields and load effects

  • Kim, Yong Chul;Tamura, Yukio
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.371-391
    • /
    • 2021
  • Tornadoes are the most devastating meteorological natural hazards. Many empirical and theoretical numerical models of tornado vortex have been proposed, because it is difficult to carry out direct measurements of tornado velocity components. However, most of existing numerical models fail to explain the physical structure of tornado vortices. The present paper proposes a new empirical numerical model for a tornado vortex, and its load effects on a low-rise and a tall building are calculated and compared with those for existing numerical models. The velocity components of the proposed model show clear variations with radius and height, showing good agreement with the results of field measurements, wind tunnel experiments and computational fluid dynamics. Normal stresses in the columns of a low-rise building obtained from the proposed model show intermediate values when compared with those obtained from existing numerical models. Local forces on a tall building show clear variation with height and the largest local forces show similar values to most existing numerical models. Local forces increase with increasing turbulence intensity and are found to depend mainly on reference velocity Uref and moving velocity Umov. However, they collapse to one curve for the same normalized velocity Uref / Umov. The effects of reference radius and reference height are found to be small. Resultant fluctuating force of generalized forces obtained from the modified Rankine model is considered to be larger than those obtained from the proposed model. Fluctuating force increases as the integral length scale increases for the modified Rankine model, while they remain almost constant regardless of the integral length scale for the proposed model.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Numerical Analysis of the Unsteady Pressure fluctuation Generated from the Interaction between a Vortex Flow with a Forward Step (와류와 전향계단의 상호작용에 의한 비정상 벽면압력 변동의 수치해석)

  • 유기완;이준신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow and the edge are studied numerically. The vertical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential fields. To investigate the effects of the edge shape the rectangular forward step is chamfered wish various angles. Calculation shows that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vertex height and its strength. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

Three-Dimensional Numerical Study on Mixed Convective Vortex Flow in Rectangular Channels at High Prandtl Number (사각채널 내 고 Pr 수의 혼합대류 볼텍스 유동에 관한 3차원 수치적 연구)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.29-30
    • /
    • 2005
  • A three-dimensional numerical calculation has been performed to investigate mixed convective vortex flow in rectangular channels(width/height=4) with the upper part cooled and the lower part heated uniformly. In this study, the Prandtl number was 909, the Reynolds number was varied from 0 to $9.6{\times}10^{-2}$ and the Rayleigh number from $10^3$ to $5{\times}10^4$. The governing equations were discretized using the finite volume method. From a parametric study, velocity and temperature distributions were obtained and discussed. It is found that vortex flow of mixed convection in rectangular channels can be classified into three flow patterns which depend on Reynolds and Rayleigh numbers, and the regular vortex structure disappears around Rayleigh number $5{\times}10^4$.

  • PDF

Numerical Study on the Vortex Evolution from a Sharp-Edged, Wall-Mounted Obstacle (장애물 주위의 와구조 형성과정에 관한 수치적 연구)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.672-681
    • /
    • 2004
  • Direct numerical simulation was carried out to study the vortical structures of the flow around a wall-mounted cube in a channel at Re=1,000 and Re=3,500 based on cubic height and bulk mean velocity. The cubic obstacle is situated in the entrance region of the channel flow where the boundary layers are developing. Upstream of the obstacle, steady and unsteady laminar horseshoe vortex systems are observed at Re=1,000 and Re=3,500, respectively; the near-wake flow is turbulent in both cases. The flow separates at each leading sharp edge of the cube, and subsequent vortex roll-up is noticed in the corresponding free-shear layer. The vortex shedding from the upper leading edge (upper vortices) and that from the two lateral leading edges (lateral vortices) are both quasi-periodic and their frequencies are computed. The upper and lateral vortices further develop into hairpin and Λ vortices, respectively. A series of instantaneous contours of the second invariant of velocity gradient tensor helps us identify spatial and temporal behaviors of the vortices in detail. The results indicate that the length and time scales of the vortical structures at Re=3,500 are much shorter than those at Re:1,000. Correlations between the upper and lateral vortices are also reported.

Heat Transfer Characteristics of the Interaction Between Bulk Flow Pulsation and a Vortex Embedded in a Turbulent Boundary Layer (주유동 맥동과 경계층 와류의 상호작용이 벽면 열전달에 미치는 영향)

  • Gang, Sae-Byeol;Maeng, Du-Jin;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.381-388
    • /
    • 2001
  • Presented are heat data which describe the effect of interaction between bulk flow pulsations and a vortex embedded in a turbulent boundary layer. The pulsation frequencies are 3 Hz, 15 Hz and 30 Hz. A half delta wing with the same height as the boundary layer thickness is used to generate the vortex flow. The convection heat transfer coefficients on a constant heat-flux surface are measured by embedded 77 T-type thermocouples. Spanwise profiles of convection heat transfer coefficients show that upwash region of vortex flow is influenced by bulk flow pulsations. The local heat transfer coefficient increases approximately by 7 percent. The increase in the local change of convection heat transfer coefficient is attributed to the spanwise oscillatory motion of vortex flow especially at the low Strouhal number and to the periodic change of vortex size.

Research on the Design Methods of Appendages to Reduce Vortex Flows Around Underwater Vehicles (수중운동체 주위 와류유동 저감을 위한 부가물 형상 설계기법 연구)

  • Sang-Jae Yeo;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.252-261
    • /
    • 2024
  • This research establishes design standards for vortex reduction devices (VRDs) aimed at minimizing underwater radiated noise by mitigating horseshoe vortex (HSV) and root vortex (RV) generated at the junction of appendages and the hull of underwater vehicles. Initial analysis replaced the influence of appendage dimensions and flow velocity with the Reynolds number by verifying the Reynolds similarity of vortex flows. The three-dimensional surfaces of VRDs were parameterized using Bezier curves. Optimal length-to-height ratios were identified by evaluating the vortex reduction performances of VRDs with various dimensions. Ultimately, non-dimensional design standards were derived for VRDs, ensuring effective vortex reduction across any appendage, thereby enhancing stealth performance.

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Lee Dong Hyun;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.