• Title/Summary/Keyword: Vortex equation

Search Result 223, Processing Time 0.027 seconds

Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion (플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석)

  • Kim, Woo-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

Study on the Angular Momentum of Axisymmetric Tropical Cyclone in the Developing Stage (발달 단계의 축대칭 열대저기압의 각운동량에 관한 연구)

  • Kang, Hyun-Gyu;Cheong, Hyeong-Bin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The angular momentum transport of an idealized axisymmetric vortex in the developing stage was investigated using the Weather Research and Forecast (WRF) model. The balanced axisymmetric vortex was constructed based on an empirical function for tangential wind, and the temperature, geopotential, and surface pressure were obtained from the balanced equation. The numerical simulation was carried out for 6 days on the f-plane with the Sea Surface Temperature (SST) set as constant. The weak vortex at initial time was intensified with time, and reached the strength of tropical cyclone in a couple of days. The Absolute Angular Momentum (AAM) was transported along with the secondary circulation of the vortex. Total AAM integrated over a cylinder of radius of 2000 km decreased with simulation time, but total kinetic energy increased rapidly. From the budget analysis, it was found that the surface friction is mainly responsible for the decrease of total AAM. Also, contribution of the surface friction to the AAM loss was about 90% while that of horizontal advection was as small as 8%. The trajectory of neutral numerical tracers following the secondary circulation was presented for the Lagrangian viewpoint of the transports of absolute angular momentum. From the analysis using the trajectory of tracers it was found that the air parcel was under the influence of the surface friction continuously until it leaves the boundary layer near the core. Then the air parcel with reduced amount of angular momentum compared to its original amount was transported from boundary layer to upper level of the vortex and contributed to form the anti-cyclone. These results suggest that the tropical cyclone loses angular momentum as it develops, which is due to the dissipation of angular momentum by the surface friction.

The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser (Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.198-208
    • /
    • 1995
  • Combining Iwan-Blevin's model into the approximated form of the nonlinear model derived for the dynamic analysis of the riser system with the inclusion of internal flow, current-vortex model is developed to investigate the effect of internal flow on vortex-induced vibration due to inline current The riser system includes a steadly flow inside the pipe which is modeled as an extensible or inextensible tubular beam. Galerkin's finite element approximation are implemented to derive the matrix equation of equilibrium for the finite element system. The investigations of the effect of internal flow on vibration due to inline current are performed according to the change of various parameters such as top tension, infernal flow velocity. current velocity, and so on. It is found that the effect of internal flow on vibration due to vortex shedding can be controlled by the increase of top tension. However, careful consideration has to be given, in design point in order to avoid the resonance band occurding near vortex shedding frequency, particularly for the long riser.

  • PDF

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

A Numerical Study on the Flow around a Rudder using Blowing Effect (선박의 타 주위 유동 및 분사효과에 관한 수치적 연구)

  • Park Je-Jun;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.185-190
    • /
    • 1998
  • A Numerical simulation on the flow around a Rudder with blowing is performed by Finite Volume Method. The governing equations are three dimensional incompressible Navier-Stokes equation and Continuity equation, Flow field around a finite Rudder including tip vortex is simulated and the change of the lift force by blowing is analyzed.

  • PDF

Generalized thom conjecture for almost complex 4-manifolds

  • Cho, Yong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.403-409
    • /
    • 1997
  • Let X be a closed almost complex 4-manifold with $b_2^+(X) > 1$, and have its canonical line bundle as a basic class. Then the pseudo-holomorphic 2-dimensional submanifolds in X with nonnegative self-intersection minimize genus in their homology classes.

  • PDF

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor (선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Kim, Se-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF