• 제목/요약/키워드: Vortex equation

검색결과 223건 처리시간 0.026초

Modeling of Fine Sediment Transport under Multiple Breakwaters of Surface-Piercing Type

  • Lee, J. L.;Oh, M. R.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.557-562
    • /
    • 2004
  • A surface-piercing barrier model is presented for understanding morphological development in the sheltered region and investigating the main factors causing the severe accumulation. Surface-piercing structures like vertical barriers, surface docks and floating breakwaters are recently favored from the point of view of a marine scenario since they do not in general partition the natural sea. The numerical solutions are compared with experimental data on wave profiles and morphological change rates within a rectangular harbor of a constant depth protected by surface-piercing thin breakwaters as a simplified problem. Our numerical study involves several modules: 1) wave dynamics analyzed by a plane-wave approximation, 2) suspended sediment transport combined with sediment erosion-deposition model, and 3) concurrent morphological changes. Scattering waves are solved by using a plane wave method without inclusion of evanescent modes. Evanescent modes are only considered in predicting the reflection ratio against the vertical barrier and energy losses due to vortex shedding from the lower edge of plate are taken into account. A new relationship to relate the near-bed concentration to the depth-mean concentration is presented by analyzing the vertical structure of concentration. The numerical solutions were also compared with experimental data on morphological changes within a rectangular harbor of constant water depth. Through the numerical experiments, the vortex-induced flow appears to be not ignorable in predicting the morphological changes although the immersion depth of a plate is not deep.

  • PDF

축류터빈의 동익에서 끝간격 누설유동에 의한 편향각과 압력손실의 모형화 (Modeling of Deviation Angle and Pressure Loss due to Rotor Tip Leakage Flow in Axial Turbines)

  • 윤의수;오군섭;정명균
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.13-13
    • /
    • 1998
  • A simple model of the tip leakage flow models of the rotor downstream flow is developed, based on Lakshminarayana's theoretical concept on the tip clearance flow and the experimental data published in open literature. And new spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a through flow analysis. Combining these new models and previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

  • PDF

주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션 (Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder)

  • 박종천;문진국;전호환;서성부
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES) (Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor)

  • 황철홍;이창언
    • 한국항공우주학회지
    • /
    • 제34권7호
    • /
    • pp.79-88
    • /
    • 2006
  • 본 논문에서는 대와동모사를 이용하여 모형 가스터빈 연소기에서 난류 예혼합연소의 선회 유동구조와 화염특성이 검토되었다. 비정상 화염 거동을 모사하기 위하여 G-방정식 화염편 모델이 적용되었다. 결과로서, 입구 선회수 증가에 따른 코너 및 중앙 재순환 유동이 뚜렷한 차이를 보이며, 화염의 길이도 점차 감소됨을 확인 할 수 있었다. 또한 강선회 조건에서 역화현상의 원인이 확인되었다. 정확한 비정상 화염거동의 모사를 위하여, 연소실 내 음향파 거동의 예측성능이 우선적으로 검토되었으며, 스텝 모서리 근처에서 생성된 와동이 화염면 변동에 가장 큰 영향을 주고 있음을 알 수 있었다. 마지막으로 비정상 화염-와동 상호작용에 대한 해석을 통해 선회와 음향파의 전개로부터 생성된 와동의 진동이 화염면 및 열발생의 변동과 밀접하게 관련되어짐을 체계적으로 규명하였다.

곡선경계처리법을 이용한 주기적으로 진동하는 실린더주위의 유동해석 (Numerical Study on Flow Over Oscillating Circular Cylinder Using Curved Moving Boundary Treatment)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.895-903
    • /
    • 2007
  • CMBT(Curved Moving Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the curved solid wall of moving obstacle in a flow field. In our research CMBT was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of CMBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of Navier-Stokes equation with deforming mesh technique. The simulations were performed in a moderate range of reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is ar Re=250 and the result is the same as the case of fixed cylinder. As the cylinder approaching to one wall, the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. As the velocity ratio increase the third vortex are generated by interacting with the 2nd vortexes developed on the upper and lower wall boundary layer. The resultant $C_d$ decrease as reynolds number increasing and the Cd approached to a value when Re>1000.

수중 프로펠러 명음 현상의 규명에 관한 연구 (A study on the identification of underwater propeller singing phenomenon)

  • 김태형;이형석
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.92-98
    • /
    • 2018
  • 본 논문은 모형 프로펠러를 대상으로 공동수조 시험, 수중 충격시험, 유한요소해석 및 전산유체해석에 기반하여 수행한 명음 발생 메커니즘 연구이다. 선미 유동을 모사하기 위해 반류망, 프로펠러 및 방향타를 설치하고 수중청음기와 가속도계로 프로펠러 명음 현상의 발생과 소멸을 계측하였다. 유한요소해석을 통해 프로펠러 날개의 고유진동수를 예측하고 접촉 및 비접촉식 충격시험으로 이를 검증하였다. RANS(Reynolds Averaged Navier-Stokes) 방정식 기반 전산유체해석을 통하여 프로펠러 날개 각 단면의 유속과 유효 받음각을 계산하였으며, DES(Detached Eddy Simulation) 기반 고해상도 해석을 통해 명음 발생 위치에서 2-D 날개 단면 뒷전의 와류흘림주파수(vortex shedding frequency) 계산을 수행하였다. 수치적으로 예측된 와류흘림주파수는 모형시험으로 계측한 명음 발생 주파수 및 날개 고유진동수와 일치함을 확인하였다.

테일러 와류 정밀여과에서 막오염의 실험적 연구 및 모델링 (Experimental Study and Modelling on Membrane Fouling in Taylor Vortex Flow Microfiltration)

  • 박진용;김현우;최창균
    • 멤브레인
    • /
    • 제13권2호
    • /
    • pp.88-100
    • /
    • 2003
  • 테일러 와류흐름 여과에서 평균기공 1.2 ${\mu}m$인 셀룰로우스 에스테르 정밀막으로 이루어진 내부원통의 회전속도와 슬러리의 농도, 입자의 크기에 따른 여과선속의 변화를 실험을 통하여 알아보았다. 여과선속은 압력차에 비례하고 저항에 반비례하였으며, 시간에 따른 케이크 층의 저항 변화를 회전속도, 슬러리의 농도, 입자의 크기에 따라 검토하였다. 회전속도가 증가할수록 케이크 저항이 감소하고 짧은 시간에 준정상 상태에 도달하였다 슬러리의 농도를 증가시킬수록 초기 저항이 급격히 증가하였고 높은 저항값에서 준정상 상태가 유지되었으나, 준정상 상태에 도달하는 시간은 농도에 무관하였다. 입자 크기가 작을 때 저항이 크게 나타남을 관찰하였는데, 입자 크기가 작을수록 막 기공을 막을 확률이 더 높고 전단력에 의해 영향을 덜 받기 때문이라 생각할 수 있다. 본 연구에서 제안한 모델식은 입자의 퇴적과 제거항으로 나누어져 있는데, 실험상수의 평균값을 사용하여 실험결과와 잘 일치하였다.

선미부에 유동제어판을 부착한 선박에 대한 포텐셜 유동해석 (Potential Flow Analysis for a Ship with a Flow Control Plate near the Stern)

  • 최희종;전호환;윤현식;이인원;박동우;김동진
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.587-594
    • /
    • 2009
  • In the paper the effect of a stern-plate attached to a ship was taken into account. The relationship between the trim angle of a ship and the wave-resistance coefficient induced by the a stern-plate was studied using the potential flow analysis method. Numerical algorithm was described using the panel method and the vortex lattice method(VLM) to simulate the flow phenomena around a ship. The non-linearity of the free surface boundary conditions were considered using the iterative method and the IGE-GMRES(Incomplete Gaussian Elimination-The Generalized Minimal RESidual) algorithm was adopted to solve the linear equation at each iterative step. Numerical calculations were carried out to investigate the validity of the adopted algorithm using KCS(KRISO 3600 TEU Container) hull. Possible cases for attachment of the plate were checked. The results showed that the numerical algorithm could be physically appropriate.

A hybrid method for predicting the dynamic response of free-span submarine pipelines

  • Li, Tongtong;Duan, Menglan;Liang, Wei;An, Chen
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.363-375
    • /
    • 2016
  • Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan's wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.

톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 - (Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery -)

  • 류병남;김경천;부정숙
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.