• Title/Summary/Keyword: Vortex core visualization

Search Result 21, Processing Time 0.019 seconds

An Experimental Investigation of Swirl Angle in a Horizontal Round Tube by Flow Visualization Method

  • Tae-Hyun Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.879-888
    • /
    • 2003
  • Swirling air flow in a horizontal round tube was experimentally studied for its visualization. The present investigation deals with swirl angle, flow visualization studies and accompanying vortex core behavior by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The swirl angle and the vortex core depended on the swirl intensity along the test tube. The results of swirl angles measured by flow visualization and hot wire reasonably agree with those of previous studies.

Investigation of vortex core identification method for wind turbine wake (터빈 후류를 관찰하기 위한 와류 코어 식별 기법 연구)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • In this study, we conduct a numerical experiment of the single 5MW NREL wind turbine and compare the performance of various vortex core identification for the wake behind the wind turbine. In the kinetic analysis of wind turbine, 20% velocity deficit at 200 s is observed, showing wake which contains tip vortex near blade tip and rotor vortex at the center of the wind turbine. Time series of velocity and turbulent intensity show numerical simulation converge to a quasi-steady state near 200 s. In the comparison between methods for vortex identification, ${\lambda}_2$-method has good performance in terms of tip vortex, rotor vortex, vortex during its cascade process compared to vorticity magnitude criteria, ${\Delta}$-method. We conclude that ${\lambda}_2$-method is suitable for vortex identification method for wake visualization.

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

Prevent Air-core During Draining with Semi Spherical Mesh (반구형 그물망을 이용한 배수시 생성되는 공기 기둥 억제 연구)

  • Han, Eun-Su;Park, Il-Seouk;Sohn, Chang-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • When draining takes place through an axially located drain port in a cylindrical tank without any prevent, a vortex with an air core occurs. In this study, semi spherical concave and convex meshes with different size inner hole are used to find the air core can suppress. The study is carried out with different values of inner hole of mesh and different install direction of semi spherical mesh using PIV and measured velocity distribution. By providing a mesh, the air core can be prevented, even if the ratio of inner hole of mesh and diameter of cylinder is around 0.66. The experimental results show that a convex mesh type is more effective to suppress the air core generation than a concave mesh type.

Observation of the Vortex Interaction over an Yawed Delta Wing with Leading Edge Extension by Flow Visualization and 5-hole Probe Measurements (가시화와 5공 프로브 측정을 통한 연장된 앞전을 갖는 편요된 델타형 날개에서의 와류 상호작용 관찰)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.388-393
    • /
    • 2001
  • An experimental study is conducted to investigate the interaction of vortices over a delta wing with leading edge extension(LEX) through the off-surface flow visualization and the 5-hole probe measurements of the wing wake region. Especially, the application of a new visualization technique is employed by ultrasonic humidifier water droplet and laser beam sheet. The results, both the off-surface visualization and the 5-hole probe, show that LEX tends to stabilize the vortices of the delta wing up to the high angle of attack even though the model is yawed. With increasing yaw, the windward leading edge vortex moves inward, and closer to the wing surface, while the leeward vortex moves outwards and away from the wing surface. The vortex interaction is promoted in the windward side, and is delayed in the leeward side.

  • PDF

Study on Unsteady Wake Behavior Behind Oscillating Flat Plates (진동하는 평판에서 발생하는 비정상 후류형상연구)

  • Ahn, June-Sung;Han, Cheol-Heui;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.950-955
    • /
    • 2003
  • The fluid propulsion mechanism of two oscillating flat plates is studied numerically using a discrete vortex method. Presently, the flat plates are assumed to be rigid. To analyze the closely coupled aerodynamic interference between the flat plates, a core addition scheme and a vortex core model are combined together. A calculated wake pattern for a flat plate in heaving oscillation motion is compared with the flow visualization. The effect of wake shapes on the aerodynamic characteristics of the flat plate in pitching oscillation is investigated. The velocity profiles behind the flat plates in pitching oscillations are plotted to investigate the possible thrust generation mechanism.

  • PDF

PIV measurements of near wake behind a sinusoidal cylinder

  • Zhang W.;Daichin Daichin;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder at Re=5200 has been investigated using DPIV system. The velocity fields, streamlines and vorticity contours of the mean flow were compared at the nodal, saddle and middle planes with those of a right circular cylinder. For the sinusoidal cylinder, the vortex core moves downstream and the vortex formation region is expanded in streamwise direction while suppressed in transverse direction at the nodal plane. At the saddle and the middle plane the vortex spread in both streamwise and transverse directions, forming the maximum vortex region at the saddle plane.

  • PDF

Numerical Simulations of Unsteady Wakes Using a Discrete Vortex Method (이산와류법을 이용한 비정상 후류의 수치적 모사)

  • Han, Cheol-Hui;Choe, Geun-Hyeong;Jo, Jin-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.397-404
    • /
    • 2001
  • The behavior of unsteady wake vortices for the two-dimensional flat plate is simulated by a discrete vortex method. The flat plates and their wakes are represented by vortex sheets. The vortex sheets are replaced with discrete vortices. The freely deforming wake sheets are computed as a part of solution and the ground effect is included by a image method. In order to predict wake shapes accurately and to model closely coupled aerodynamic interference, a vortex core model and a vortex core addition scheme are used. The simulated wake shapes convecting behind the plates in unsteady motion are compared to a flow visualization result and other numerical results. The present results agree well with them. The present method is also applied to the aerodynamic analysis of flat plates in tandem configuration in ground effect.

Flapping Propulsion of Oscillating Flat Plates (진동하는 평판들에서의 플래핑 추진)

  • Ahn, June-Sung;Han, Cheol-Heui;Kim, Chang-Hee;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.118-126
    • /
    • 2004
  • The propulsive characteristics of oscillating flat plates are investigated using a discrete vortex method. The plates and their wakes are represented by discrete point vortices. To analyze the closely coupled aerodynamic interference between the plates, a vortex core model and a vortex core addition scheme are combined. A calculated wake shape for a flat plate in heaving oscillation is compared with flow visualization. The effect of wake shapes on the propulsive characteristics of the plates in pitching oscillation is investigated. The propulsive characteristics of oscillating plates with three cases (1. one is stationary and another is oscillating, 2. both oscillating in phase, 3. both oscillating out of phase) are calculated. The plates oscillating out of phase showed the largest thrust force among the three cases.

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.