• 제목/요약/키워드: Vortex center

Search Result 306, Processing Time 0.046 seconds

Potential Flow Analysis for a Ship with a Flow Control Plate near the Stern (선미부에 유동제어판을 부착한 선박에 대한 포텐셜 유동해석)

  • Choi, Hee-Jong;Chun, Ho-Hwan;Yoon, Hyun-Sik;Lee, In-Won;Park, Dong-Woo;Kim, Don-Jean
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.587-594
    • /
    • 2009
  • In the paper the effect of a stern-plate attached to a ship was taken into account. The relationship between the trim angle of a ship and the wave-resistance coefficient induced by the a stern-plate was studied using the potential flow analysis method. Numerical algorithm was described using the panel method and the vortex lattice method(VLM) to simulate the flow phenomena around a ship. The non-linearity of the free surface boundary conditions were considered using the iterative method and the IGE-GMRES(Incomplete Gaussian Elimination-The Generalized Minimal RESidual) algorithm was adopted to solve the linear equation at each iterative step. Numerical calculations were carried out to investigate the validity of the adopted algorithm using KCS(KRISO 3600 TEU Container) hull. Possible cases for attachment of the plate were checked. The results showed that the numerical algorithm could be physically appropriate.

Laminar Flow Structures Near a Circular Cylinder in between a Free-Surface and a Moving Wall (자유수면과 움직이는 벽면 사이에 놓인 원형 실린더 주위의 층류 유동구조)

  • Seo, Jang-Hoon;Jung, Jae-Hwan;Yoon, Hyun-Sik;Park, Dong-Woo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.213-221
    • /
    • 2012
  • The present study numerically investigates the interaction between a free-surface and flow around a circular cylinder over a moving wall. In order to simulate the flow past the circular cylinder over a moving wall near a free-surface, this study has adopted the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. Numerical simulation is performed for a Reynolds numbers of 100 in the range of $0.25{\leq}g/D{\leq}2.00$ and $0.5{\leq}h/D{\leq}2.00$, where g/D and h/D are the gaps between the cylinder and a moving wall and the cylinder and a free-surface normalized by cylinder diameter D, respectively. According to g/D and h/D, the vortex structures have been classified into three patterns of the two-row, one-row, steady elongation. In general, both of g/D and h/D have the large values which mean the cylinder is far away from the wall and the free-surface, two-row vortex structure forms in the wake. When g/D decreases, the two-row vortex structure gradually transfers into the one-row vortex structure. When the g/D reveals the critical value below which the flow becomes steady state, resulting in the steady elongation vortex.

Study of the Wake Flow Around a Circular Cylinder (단독 원기둥 주위의 후류유동에 관한 연구)

  • Lee, Jaesung;Kim, Sangil;Seung, Samsun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.891-896
    • /
    • 2015
  • This experimental study investigated the wake flow around an elastically supported circular cylinder. In this study, the Reynolds numbers are varied in the region of $1.4{\times}10^4{\leq}Re{\leq}3.2{\times}10^4$. Under these conditions, we have captured the process of the wake mechanism and the moving path of the vortex by measuring the velocity at each position in the wake around the cylinder. Further, these facts from the wind tunnel test are proved by a flow visualization test through a water channel. From the result, we have arrived at the following conclusions : i) The process (formation${\rightarrow}$growth${\rightarrow}$collapse) of vortex is observed in the wake around the cylinder, ii) The vortex efflux angle is approximately $16^{\circ}{\sim}17^{\circ}$ under the experimental conditions. These angles have no relationship with the velocity change and the existence of flow-induced vibrations of the cylinder, and iii) The moving path of the vortex center is obtained by spectrum analysis of the fluctuating velocity behind the cylinder. These are confirmed by conducting visualization tests.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.

Magnetic Vortex Oscillators

  • Choi, Youn-Seok;Lee, Ki-Suk;Kim, Sang-Koog
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.44-44
    • /
    • 2011
  • PDF