• 제목/요약/키워드: Vortex Element

검색결과 115건 처리시간 0.024초

FAR25급 터보프롭 항공기 프로펠러 설계 및 공력특성 연구 (The Study of Propeller Design and Aerodynamics Characteristics for FAR25 Grade Turboprop Aircraft)

  • 최원;정인면;김지홍;이일우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.648-651
    • /
    • 2010
  • FAR25급 터보프롭 항공기에서 프로펠러는 고속으로 비행할 수 있는 추력을 얻기 위해 공기역학적으로 우수하며 높은 효율을 가져야 한다. 프로펠러 형상 설계를 위한 익형은 전형적인 터보프롭 항공기 프로펠러에 사용되는 Clark-Y를 적용하였다. 프로펠러 공력설계 및 해석에는 최소에너지손실을 위한 조건을 만족시키도록 설계하는 와류-깃요소 이론(Vortex-Blade element theory)에 근거한 Adkins의 방법을 이용한 Javaprop을 이용하였다. 시위길이와 피치각 분포를 변경해 가며 FAR25급 터보프롭 항공기의 설계점에 가장 효율적인 프로펠러 형상을 생성하였으며, 전산유체역학을 이용하여 생성된 프로펠러 공력특성 분석을 통해 프로펠러 설계결과가 FAR25급 터보프롭 항공기에 적용 가능함을 확인하였다.

  • PDF

차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석 (The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis)

  • 최원
    • 한국항공우주학회지
    • /
    • 제40권12호
    • /
    • pp.1017-1024
    • /
    • 2012
  • 깃끝단 후퇴각을 가지는 최신 터보프롭 항공기의 프로펠러 블레이드에 대한 공력설계 및 해석을 수행하였다. 프로펠러 형상 설계를 위한 익형은 HS1 계열을 적용하였다. 와류-깃요소 이론(Vortex-Blade element theory)을 기반으로 하고 최소에너지 손실 조건을 만족하는 Adkins의 방법을 적용하여 Conventional 프로펠러 블레이드에 대한 공력설계 및 성능해석을 하였다. 목표 항공기의 설계점에서 코드 길이와 피치각을 변경해 가며 프로펠러 형상을 생성하였다. Conventional 프로펠러 블레이드 형상 정보를 기반으로 코드 길이, 깃끝단 후퇴각을 수정 적용하여 최신 프로펠러를 설계하였다. 전산유체역학을 이용한 설계된 최신 프로펠러 공력특성 분석을 통하여 최신 프로펠러가 적절하게 설계되었음을 확인하였다.

받음각을 갖는 평판보의 유동 여기진동에 관한 연구 (A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack)

  • 이기백;손창민;김봉환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1919-1932
    • /
    • 1991
  • 본 연구에서는 고강도 알루미늄 합금으로 제작된 평판보의 받음각(.alpha.)를 10˚ 에서 30˚까지 10˚씩 변화시킨 3가지의 모델에 대해, 각 모델의 Re$_{d}$수 변화에 대한 후류의 스펙트럼분석, 레이저 도플러 유속계(laser doppler velocimetry)를 이용 한 유동장 해석 및 평판보의 응답을 실험을 통해 조사, 분석하고 유동장과 측정이 용 이하지 않은 얇은 평판주위의 압력분포에 대한 전산해석을 수행함으로써 유동 여기진 동 구조의 규명을 시도하였다.다.

Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator

  • Tu, Xi;Wu, Ye;Li, Zhengliang;Wang, Zhisong
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.87-102
    • /
    • 2021
  • Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.

비정상 와류격자 기법을 이용한 해상용 부유식 풍력발전기의 공력하중특성

  • 전민우;김호건;이승민;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The wind can be stronger and steadier further from shore, but water depth is also deeper. Then bottom-mounted towers are not feasible, and floating turbines are more competitive. There are additional motions in an offshore floating wind turbine, which results in a more complex aerodynamics operating environment for the turbine rotor. Many aerodynamic analysis methods rely on blade element momentum theory to investigate aerodynamic load, which are not valid in vortex ring state that occurs in floating wind turbine operations. So, vortex lattice method, which is more physical, was used in this analysis. Floating platform's prescribed positions were calculated in the time domain by using floating system RAO and waves that are simulated using JONSWAP spectrum. The average value of in-plane aerodynamic force increase, but the value of out-of-plane force decrease. The maximum variation aerodynamic force abruptly increases in severe sea state. Especially, as the pitch motion of the barge platform is large, this motion should be avoided to decrease the aerodynamic load variation.

  • PDF

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

압전 작동기를 이용한 유체 유기 진동의 능동 제어 (Active Control of Flow-Induced Vibration Using Piezoelectric Actuators)

  • 한재홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

이동격자계에서 분리유한요소법에 의한 운동에너지 보존 알고리듬 (Kinetic energy conservative algorithm in moving grid system using segregated finite element formulation)

  • 성재용;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1538-1551
    • /
    • 1997
  • Kinetic energy conservation for fixed and moving grids is examined in time-accurate finite element computation of fully unsteady inviscid flows. As numerical algorithms, fractional step method (FSM) and modified SIMPLE are used. To simulate the flow in moving grid system, arbitrary Lagrangian-Eulerian (ALE) method is adopted. In the present study, the energy conserving time integration rule for finite element algorithm is proposed and discussed schematically. It is shown that the discretization by Crank-Nicolson in time and Galerkin (central difference) in space must be used to ensure energy conservation. The developed code has been tested for a standing vortex in fixed or moving grid system, sloshing in a tank and propagation of a solitary wave, and has been shown to be a completely energy conserving algorithm.

Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate

  • Avsar, Ahmet Levent;Sahin, Melin
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.249-265
    • /
    • 2016
  • A bimorph piezoelectric energy harvester is developed for harvesting energy under the vortex induced vibration and it is integrated to a host structure of a trapezoidal plate without changing its passive dynamic properties. It is aimed to select trapezoidal plate as similar to a vertical fin-like structure which could be a part of an air vehicle. The designed energy harvester consists of an aluminum beam and two identical multi fiber composite (MFC) piezoelectric patches. In order to understand the dynamic characteristic of the trapezoidal plate, finite element analysis is performed and it is validated through an experimental study. The bimorph piezoelectric energy harvester is then integrated to the trapezoidal plate at the most convenient location with minimal structural displacement. The finite element model is constructed for the new combined structure in ANSYS Workbench 14.0 and the analyses performed on this particular model are then validated via experimental techniques. Finally, the energy harvesting performance of the bimorph piezoelectric energy harvester attached to the trapezoidal plate is also investigated through wind tunnel tests under the air load and the obtained results indicate that the system is a viable one for harvesting reasonable amount of energy.

Slat Noise Source Modeling of Multi-element Airfoil in High-lift Configuration

  • Hwang, Seung Tae;Han, Chang Kyun;Im, Yong Taek;Kim, Jong Rok;Bae, Youngmin;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.197-205
    • /
    • 2017
  • We investigate the slat noise generation mechanism by using large-eddy simulation (LES) and simple source modeling based on linearized Euler equations. An incompressible LES of an MD 30P30N three-element airfoil in the high-lift configuration is conducted at $Re_c=1.7{\times}10^6$. Using the total derivative of the hydrodynamic pressure (DP/Dt) acquired from the incompressible LES, representative noise sources in the slat cove region are characterized in terms of simple sources such as frequency-specific monopoles and dipoles. Acoustic radiation around the 30P30N multi-element airfoil is effectively computed using the Brinkman penalization method incorporated with the linearized Euler equation. The directivity pattern of $p^{\prime}_{rms}$ at $r=20c_{slat}$ in the multiple sources is closely compared to that obtained by the application of the LES/Ffowcs-Williams and Hawking's methods to the entire flow field. The power spectrum of p' at ${\theta}=290^{\circ}$ is in good agreement with the data reported in BANC-III, especially the broadband part of the spectrum with a decaying slope ${\propto}f^{-3}$.