• 제목/요약/키워드: Vortex Drop

Search Result 60, Processing Time 0.029 seconds

자동차 냉/난방 성능 향상을 위한 공기조화 덕트의 기류해석 (Aerodynamic Analysis of Automotive HVAC Duct for Enhancement of Cooling/Heating Performance)

  • 주재우;이기돈;허만웅;김광용;박준규;윤정환;김홍빈
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.23-28
    • /
    • 2012
  • In the present work, numerical analyses of air flow in HVAC duct have been carried out for enhancement of cooling/heating performance. For the analyses, three-dimensional Reynolds-averaged Navier-Stokes equations have been solved with the shear stress transport turbulence model. The numerical results were validated in comparison with the experimental data. Based on the numerical results, the HVAC duct was designed to reduce the pressure loss. The modified duct geometry shows largely reduced pressure drop in comparison with the reference geometry. And, through modified duct shape, the performance of air conditioning has been enhanced.

아이스슬러리의 분기관내 압력손실과 IPF 변화에 관한 실험적 연구 (Experimental Study on Transformation of IPF and Pressure Drop in Branches with Ice Slurry)

  • 박기원;최현웅;노건상;정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.272-279
    • /
    • 2003
  • This study aimed to understand the effects of transporting ice slurry Particles through Pipes with branches. The experimental apparatus was constructed as ice slurry mixing tank. vortex pump, manometers for differential pressure measuring. IPF(ice packing factor) measuring instruments and branches as test sections. The experiments were carried out under various conditions. with concentration of water solution ranging between 0∼20wt% and velocity of water solution at the entry ranging between 1.5∼2.5m/s. The differential Pressure and IPF between the pipe entry and exit were measured. and flowing form was checked throughout the experiment. The pressure loss in 3d branches appeared compared with 6d branches so that it was very high. In the pressure loss of the inside and outside of branches. 6d branches was showed the difference. but was agreed in 3d branches The pressure loss according to concentration of water solution, low value appeared at 10wt% in 6d branches, at 20wt% in 3d branches. The pressure loss according to velocity, did not show large difference. The change of IPF at outlet, appeared +15∼-25% in 6d branches and 0∼-20% in 3d branches. The difference of IPF at the inside and outside of branches. appeared 10∼15% in 6d branches and maximum 5% in 3d branches.

반응표면법을 활용한 축류형 사이클론 구조 최적화 설계에 관한 연구 (A Study on Optimum Design of an Axial Cylcone structure using Response Surface Method)

  • 조진일;윤준호;조영광;석현호;김태성
    • 한국입자에어로졸학회지
    • /
    • 제17권3호
    • /
    • pp.71-79
    • /
    • 2021
  • Ultrafine dust, which is emitted from industrial factories or all kinds of vehicles, threatens the human's respiratory system and our environment. In this regard, separating airborne particles is essential to mitigate the severe problem. In this work, an axial cyclone for the effective technology of eliminating harmful dust is investigated by numerical simulation using Ansys 2020, Fluent R2. In addition, the optimized structure of the cyclone is constructed by means of multi objective optimization based on the response surface method which is a representative method to analyze the effect of design parameter on response variables. Among several design parameters, the modified length of the vortex finder and dust collector is a main point in promoting the performance of the axial cyclone. As a result, the optimized cyclone exhibits remarkable performance when compared to the original model, resulting in pressure drop of 307 Pa and separator efficiency of 98.5%.

수리실험을 이용한 지하유입시설 유입구 형상에 따른 수리학적 특성 분석 (Study of Hydraulic Characteristics with the Shape of the Intake of an Underground Inflow Facility using Hydraulic Experiments)

  • 성호제;박인환;이동섭
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.119-126
    • /
    • 2018
  • In recent years, as flood damage caused by heavy rains increased, the great-depth tunnel using urban underground space is emerging as a countermeasure of urban inundation. The great-depth tunnel is used to reduce urban inundation by using the underground space. The drainage efficiency of great-depth tunnel depends on the intake design, which leads to increase discharge into the underground space. The spiral intake and the tangential intake are commonly used for the inlet facility. The spiral intake creates a vortex flow along the drop shaft and reduces an energy of the flow by the wall friction. In the tangential intake, flow simply falls down into the drop shaft, and the design is simple to construct compared to the spiral intake. In the case of the spiral intake, the water level at the drop shaft entrance is risen due to the chocking induced by the flowrate increase. The drainage efficiency of the tangential intake decreases because the flow is not sufficiently accelerated under low flow conditions. Therefore, to compensate disadvantages of the previously suggested intake design, the multi-stage intake was developed which can stably withdraw water even under a low flow rate below the design flow rate. The hydraulic characteristics in the multi-stage intake were analyzed by changing the flow rate to compare the drainage performance according to the intake design. From the measurements, the drainage efficiency was improved in both the low and high flow rate conditions when the multi-stage inlet was employed.

하전방식에 따른 전기싸이클론의 집진특성 (Collection Characteristics of Electro-Cyclone with Charging Type)

  • 여석준
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.463-473
    • /
    • 1999
  • The main purpose of this study is to investigate the characteristics of precharge electro-cyclone compared to those of innercharge electro-cyclone, experimentally. Especially, the experiment is executed focusing on the improvement of collection efficiency with the charging types including the experimental parameters such as the discharge electrode shapes, applied voltages and gas inlet velocities. Results show that the overall collection efficiency of precharge electro-cyclone is increased over 20% than that of the innercharge type for the same discharge electrode(ø 4 mm, screw rod) in the inlet velocity of 4 m/s, and applied voltage of 30kV. Moreover, the pressure drop of precharge type becomes 10% lower than that of the innercharge type for the inlet velocity of 12 m/s owing to the disturbance of inner vortex flow by the discharge electrode equipped in the center region of cyclone body.

  • PDF

하이브리드 로켓에서의 Negative DC-shift 발생 특성 (Negative DC-shift Instability in Hybrid Rocket)

  • 강동훈;이창진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.522-525
    • /
    • 2009
  • 하이브리드 로켓의 연소 과정에서 DC-shift 현상을 관찰할 수 있다. 이와 같은 현상은 갑작스런 구조적 문제를 일으키거나 추력의 상승 또는 감소를 가져와 추력 성능의 저하를 유발한다. DC-shift 현상에 대한 이해를 통해 하이브리드 로켓의 연소 안정의 조건을 알 수 있다. 이 논문에서는 예-혼합실과 후-연소실을 장착하고 산화제 공급 유동 조건을 달리 함으로서 Negative DC-shift 현상을 유도하고 다양한 산화제 공급 유동 조건에 따른 Negative DC-shift 현상의 발생 조건과 특징에 대하여 알아보았다. Negative DC-shift 현상에 대한 실험적 연구를 통하여 Negative DC-shift 현상의 발생 원인과 현상의 특징에 대해 정의하였다.

  • PDF

관내 유동 플라스틱 슬러리의 열전달 특성 (Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP

  • Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • 제11권3호
    • /
    • pp.164-171
    • /
    • 2006
  • Numerical modeling of the flow velocity fields for the near corona wire electrohydrodynamic (EHD) flow was conducted. The steady, two-dimensional momentum equations have been computed for a wire-plate type electrostatic precipitator (ESP). The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for the differential equations was used by SIMPLEST algorithm. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson's electric field, ion transport equations and the momentum equation with electric body force were used for the numerical simulation and the Chen-Kim ${\kappa}-{\varepsilon}$ turbulent model numerical results that an EHD secondary flow was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode ($Re_{cw}=12.4$). Secondary flow vortices caused by the EHD increases with increasing discharge current or EHD number, hence pressure drop of ESP increases.

초소형 Lapple 사이클론 집진기의 수치적 성능평가 (Numerical Performance Evaluation of an Ultra-small Lapple Cyclone Separator)

  • 박수민;권재성
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.90-95
    • /
    • 2020
  • The purpose of this study is to numerically evaluate the collection performance of an ultra-small Lapple cyclone separator for 1~10 ㎛ particles introduced at flow rate of 10 L/min. The numerical evaluation reveals that a static pressure drop occurs more dominantly inside of the cyclone separator than at the inlet and the vortex finder. Also a fluid flow in the cyclone separator is confirmed to have a helical structure heading upward in the center of cyclone separator and downward in the vicinity of wall. The investigation on dust collection efficiency of the Lapple cyclone separator shows that particles of 4~8 ㎛ diameters are collected at very lower efficiency than other sizes. Then, the cut-point diameter of the cyclone separator is 1.48 ㎛.

설암 환자에서 경부청소술 및 재건술에 따른 수술 전 후 기도 내 공기 유동 특성 (Flow Characteristics of Upper Airway After Neck Dissection and Reconstructive Surgery in Tongue Cancer Patients)

  • 송재민;서희림;염은섭
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.90-95
    • /
    • 2024
  • This study examined changes in airway airflow characteristics before and after extensive surgery for tongue cancer, which includes neck dissection and reconstruction. Pre- and post-operative CBCT scans were used to model 3D upper airways. Computational fluid dynamics (CFD) simulations analyzed airflow and pressure variations. Results showed a significant reduction in airway volume post-surgery, especially in the posterior tongue and epiglottis areas, leading to increased airflow velocity and complex vortex formations. Pressure drop analysis revealed that post-surgery, higher negative pressure is required for inhalation, indicating increased breathing effort. This suggests that the surgical removal of cancerous tissues and lymph nodes, along with reconstruction, alters airway geometry significantly, potentially impacting respiratory function. The findings highlight the clinical importance of assessing airway changes in tongue cancer surgery to anticipate and mitigate postoperative respiratory complications.