• Title/Summary/Keyword: Vortex Breakdown

Search Result 50, Processing Time 0.029 seconds

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor (선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Kim, Se-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

A Study on the Turbulent Flowfield in the Annular Combustor with the Multi Swirl Injectors (환형연소기의 Multi Swirl Injector 상호간섭 영향에 관한 연구(1))

  • Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.289-292
    • /
    • 2009
  • Injector dynamics of multi swirl injectors in an annular combustor have been investigated by LES(Large Eddy Simulation) turbulent model with MPI parallel computation technique. The present study employs the LM6000 lean premixed swirl-stabilized annular combustor. Real shape combustor is simulated in order to investigate the detail interaction mechanism among multi-injectors. The strong vortex breakdown occurs at the impinging surface between the adjacent injectors so that the complex and strong oscillatory pressure propagates inside of the combustor. Tangential pressure fluctuation mode was captured by including multi injectors in computational domain.

  • PDF

A Review on Swirling Flow by Using Flow Visualization Techniques in the Circular Tubes (원형관 내에서 유동가시화 기법을 이용한 선회유동에 관한 연구고찰)

  • Chang, Tae-Hyun;Doh, Deog-Hee;Lee, Kwoon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.12-21
    • /
    • 2010
  • Swirling flows are found in very wide range of applications, for examples, cyclone separators, spraying machines, heat exchangers and jet pumps, ect. Relatively, little work has been done on the swirl flow using flow visualization techniques. This study deals with many visualization techniques to study on swirling flow. These techniques are related to oil films methods, smoke, dye liquids, liquid crystal, stroboscope light, smoke wire, white light, naphthalene sublimation, LDV(lase doppler Velocimetry) and PIV(particle image velocimetry). The present work has handled single, annular, carved tube, swirl expansion and swirl wake using several visualization methods in the vertical and horizontal circular tube.

CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect (천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석)

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.535-543
    • /
    • 2014
  • A computational simulation for a nonslender BWB UCAV configuration with rounded leading edge and span of 1.0m was performed to analyze its aerodynamic characteristics. The freestream is 50m/s over -4 to 26 degree A.o.A.s. Reynolds number based on the mean chord length is $1.25{\times}10^6$. 3D multi block hexahedral grids are used which allow good grid quality and ease to capture boundary layer. ${\gamma}-Re_{\theta}$ model as well as $k-{\omega}$ SST model is employed to assess the effect of transition for flow behavior. Drag and lift of the UCAV were well predicted while $C_M$ is under predicted at high angle of attacks and influenced by the turbulence models strongly. After assessing pressure distribution, skin friction lines and velocity field around the UCAV configuration, it was found that transition effect should be considered to enhance the prediction of aerodynamic behavior by a vortical flowfield.

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows (공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향)

  • Min, Tae-Gee;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1227-1238
    • /
    • 2000
  • This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

Flow Visualization Study on Vortices over a Stealth UCAV Configuration (스텔스 무인전투기 형상의 와류 거동에 대한 흐름가시화 연구)

  • Kang, Seung-Hee;Lee, Do-Kwan;Hyun, Jae-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.467-473
    • /
    • 2007
  • Flow visualization study to qualitatively define the flow field over a stealth UCAV(Uninhabited Combat Air Vehicle) configuration in a water tunnel has been conducted to clarify the basic aerodynamic performance. The test was performed at freestream velocity of 12.7 cm/sec which was corresponding to a Reynolds number of $1.4{\times}10^4$ based on mean aerodynamic chord. The development and breakdown of vortices illuminated by using dye were compared to the previous force and moment data. It was shown that the effect of the vortices generated by the main-body and junction are dominant in the low angle-of-attack region. However, in the high angle-of-attack region, the vortex generated by the fore-body mainly influenced the aerodynamic performance of the model.

Flows over Concave Surfaces: Development of Pre-set Wavelength Görtler Vortices

  • Winoto, S.H.;Tandiono, Tandiono;Shah, D.A.;Mitsudharmadi, H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.10-23
    • /
    • 2008
  • The development of pre-set wavelength G$\ddot{o}$rtler vortices are studied in the boundary-layer flows on concave surfaces of 1.0 and 2.0 m radius of curvature. The wavelengths of the vortices were pre-set by thin wires of 0.2 mm diameter placed 10 mm upstream and perpendicular to the concave surface leading edge. Velocity contours were obtained from velocity measurements using a single hot-wire anemometer probe. The most amplified or dominant wavelength is found to be 15 mm for free-stream velocity of 2.1 m/s and 3.0 m/s on the concave surface of R = 1 m and 2 m, respectively. The velocity contours in the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different regions can be identified based on the growth rate of the vortices. The occurrence of a secondary instability mode is also shown in the form of mushroom-like structures as a consequence of the non-linear growth of the G$\ddot{o}$rtler vortices. By pre-setting the vortex wavelength to be much larger and much smaller than the most amplified one, the splitting and merging of G$\ddot{o}$rtler vortices can be respectively observed.

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System (단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구)

  • Yu, Samuel;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.