• Title/Summary/Keyword: Von-Karman nonlinearity

Search Result 56, Processing Time 0.021 seconds

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions

  • Jinpeng Song;Yujie He;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Considering that different boundary conditions can have an important impact on structural vibration characteristics. In this paper, the nonlinear forced vibration behavior of functionally graded material (FGM) doubly curved shells with initial geometric imperfections under different boundary conditions is studied. Considering initial geometric imperfections and von Karman geometric nonlinearity, the nonlinear governing equations of FGM doubly curved shells are derived using Reissner's first order shear deformation (FOSD) theory. Three different boundary conditions of four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS) were studied, and a system of nonlinear ordinary differential equations was obtained with the help of Galerkin principle. The nonlinear forced vibration response of the FGM doubly curved shell is obtained by using the modified Lindstedt Poincare (MLP) method. The accuracy of this method was verified by comparing it with published literature. Finally, the effects of curvature ratio, power law index, void coefficient, prestress, and initial geometric imperfections on the resonance of FGM doubly curved shells under different boundary conditions are fully discussed. The relevant research results can provide certain guidance for the design and application of doubly curved shell.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Isogeometric Analysis of FGM Plates in Combination with Higher-order Shear Deformation Theory (등기하해석에 의한 기능경사복합재 판의 역학적 거동 예측)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.832-841
    • /
    • 2020
  • Purpose: This study attempts at analyzing mechanical response of functionally graded material (FGM) plates in bending. An accurate and effective numerical approach based on isogeometric analysis (IGA) combined with higher-order shear deformation plate theory to predict the nonlinear flexural behavior is developed. Method: A higher-order shear deformation theory(HSDT) which accounts for the geometric nonlinearity in the von Karman sense is presented and used to derive the equilibrium and governing equations for FGM plate in bending. The nonlinear equations are solved by the modified Newton-Raphson iterative technique. Result: The volume fraction, plate length-to-thickness ratio and boundary condition have signifiant effects on the nonlinear flexural behavior of FGM plates. Conclusion: The proposed IGA method can be used as an accurate and effective numerical tool for analyzing the mechanical responses of FGM plates in flexure.

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.