• Title/Summary/Keyword: Von mises stress

Search Result 536, Processing Time 0.021 seconds

Stress Distribution in Microvascular Anastomotic Coupler (AnaFix®) Micropins with Respect to the Fillet Radius (필렛효과에 따른 미세혈관 문합커플러(AnaFix®) 마이크로핀의 응력분포)

  • Jee, Dae-Won;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1139-1145
    • /
    • 2011
  • An automated anastomotic ring-pin system consisting of both the anastomotic ring-pin system and the coupler device has eliminated the drawbacks of the suture method. High density polyethylene (HDPE), a material with outstanding biocompatibility and injection molding capability, was used in the ring. SUS316 stainless steel, Ti-6Al-4Nb, Ti-6Al-4V, and unalloyed titanium were used in FEM simulations of the micropin. The authors categorized the microvascular anastomotic ring micropins into short neck (SN) and long neck (LN) groups in order to evaluate the effect of the micropin's fillet radius and neck length on the von Mises stress. The micropins were further divided into those with and without fillet. On the basis of the fillet radius rate (FRR), which represents the rate of change in the von Mises stress with respect to the availability and shape of the fillet, and the neck length rate (NLR), which represents the rate of change in the von Mises stress with respect to changes in the length of the neck within the fillet shape, it can be concluded that the SN-3 neck design is the most stable.

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.

Stress Analysis of Blanking Plate Applied by Press (프레스에 의한 블랭킹 판재의 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.66-71
    • /
    • 2008
  • The data of the deformation and the stress according to time are studied at upper model of press and lower model of the blanking plate applied by press with the width, length and height of 0.4 m and 0.6 m respectively. The press is pushing downward on the plate fixed at the lower floor. These data are compared and investigated through this study. By using these results, there is the maximum deformation at 4 corners in the lower plate model of aluminium alloy fixed at lower floor. This deformation incase of elapsed time of 0.6 second becomes 4 times as much as in case of elapsed time of 0.2 second. The quantity of deformation at the lower plate model becomes more than at the upper press model to the extent of 10%. At the lower plate model of aluminium alloy, there is the maximum Von-Mises equivalent stress at 4 corners and both sides of middle area on the lower plate model of aluminium alloy. This stress in case of elapsed time of 0.6 second becomes 6 times as much as in case of elapsed time of 0.2 second. The Von-Mises equivalent stress of lower plate model becomes 2 times as much as that of upper press mode.

  • PDF

Analysis Study on Fatigue Stress on the Orthotropic Steel Deck Applied Polymer Concrete Pavement (폴리머 콘크리트 포장을 적용한 강바닥판의 피로응력에 관한 해석적 연구)

  • Han, Bum-Jin;Yoon, Sang-Il;Choi, Byung-Jin;Choi, Jin-Woong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 2014
  • In this study, polysulfide epoxy polymer concrete was chosen as an ultra thin bridge deck overlay, and the effect of polymer concrete pavement on the fatigue stress range of the orthotropic steel deck was analyzed through the comparative analysis with epoxy asphalt pavement and SFRC pavement. Abaqus was used to estimate the fatigue stress range, and signed von-mises stress was used to estimate fatigue stress range according to pavement materials and thickness, considering there were multi axis stresses which have longitudinal and lateral direction on the welded parts of the steel deck.

Finite Element Analysis of Supporting Bone according to Custom Abutment Angles (맞춤형 지대주 각도에 따른 지지골의 유한요소 분석)

  • Nam, Min-Gyeong;Kim, Nam-Sic
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • Purpose: The purpose of this study is a finite element analysis of supporting bone according to custom abutment angle. Methods: Implant fixture was selected with a diameter of 4 mm and the length of 13 mm. The fixture and abutment was designed by a combination of the abutment screw clamping force to produce a custom abutment model of $0^{\circ}$, $15^{\circ}$, $25^{\circ}$ and $35^{\circ}$. The loading condition of 176 N was applied to the lingual surface of the crown, near to the incisor edge, and horizontal load. An oblique load of $90^{\circ}$ was applied long axis of the implant fixture analyze the stress of supporting bone. Results: The result of mechanical analysis was observed that the supporting bone stress analysis of the horizontal load, the von Mises stress values (MPa) are given in the order of TH00 (432.6) > TH25 (418.0) > TH15 (417.4) > TH35 (415.8), the oblique load, the von Mises stress values are given in the order of TO00 (459.3) > TO15 (399.6) > TO25 (374.8) > TO35 (343.4) Conclusion: The $35^{\circ}$ abutment over the current clinical tolerance limits will be available for clinical application.

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

Three dimensional finite element analysis of the fully bone anchored bridge and implant-supported overdenture in edentulous mandible (무치하악에서 임플랜트를 이용한 고정성 및 가철성 보철물의 삼차원 유한요소 분석)

  • Lim, Heon-Song;Cho, In-Ho;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.251-276
    • /
    • 2002
  • The purpose of this study was to compare and analyze the stress distribution and displacement of the fully bone anchored bridge and implant-supported overdenture in edentulous mandible on certain conditions such as number of implants, different design of superstructure. Three dimensional analysis was used and nine kinds of models designed for this study. FEM models were created using commercial software[$Rhinoceros^{(R)}$ (Ver. 1.0 Robert McNeel & Associates, USA)], and analyze using commercial software [Cosmos/$Works^{TM}$(Ver. 4.0 Structural Research & Analysis Corp., US A)]. A vertical load and $45^{\circ}$ oblique load of 17kgf were applied at the left 1st. molar. The results were as follows : (1) In the group of OVD, the displacement was reduced as increasing the number of fixture under vertical loading but there was no specific difference in Von Mises stress. Under oblique loading, the displacement was same at the vertical loading but Von Mises stress was reduced in order of OVD-3, OVD-4, OVD-2. But, bending moment reduced according to increasing the number of fixture. (2) In the group of FBAB, under vertical and oblique loading, the magnitude of Von Mises stress and displacement reduced according to increasing the number of fixtures. FBAB-4 and FBAB-5 showed similar score and distribution, but FBAB-6 showed lower value relatively. (3) In cantilever design, the maximum displacement reduced under vertical loading but increased under oblique loading. However, von mises stresses on fixtures increased under vertical and oblique loading. (4) In comparing OVD-group with FBAB-group, FBAB showed low magnitude of displacement in respect of oblique loading. However OVD-group was more stable in respect of stress distribution.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

A Study on the Strength Safety of LPG Fuelling Nozzle (LPG 충전장치의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.72-77
    • /
    • 2018
  • This paper presents the FEM analysis results on the strength safety of LPG fuelling nozzle, which is composed of ball valve and long cylinder tube. For the strength safety analysis of LPG fuelling Nozzle, the gas pressure of 0.5~3.5MPa has been supplied to the ball valve and long cylinder tube bodies with the wall thickness of 1.7~3.5mm. The maximum von Mises stress of the ball valve with 1.7mm wall thickness is 25.4MPa for the supply gas pressure of 3.5MPa, which is 25.9% compared with that of the yield stress of the brass. And the maximum von Mises stress was 23.7MPa when a 3.5MPa gas pressure was applied to a long cylinder tube with a wall thickness of 1.7mm, which was 6.7% more safe than the ball valve which was analyzed under the same conditions. For the increased wall thickness, 2.0mm of the long cylinder tube, the maximum von Mises stress of 20.2MPa is 14.8% more safe compared with that of 1.7mm wall thickness of the same cylinder tube. Thus, the wall thickness of the ball valve and cylinder tube is recommended as an optimized thickness of 1.7~2.0mm for the strength safety of the LPG fuelling nozzle.

Pin Pull Characteristics of Pin Lead with Variation of Mechanical Properties of Pin Lead in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 Lead Pin의 기계적 특성에 따른 Pin Pull 거동 특성 해석)

  • Cho, Seung-Hyun;Choi, Jin-Won;Park, Gyun-Myoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • In this study, von Mises stress and total strain energy density characteristics of lead pin in PGA (Pin Grid Array) packages have been calculated by using the FEM (Finite Element Method). FEM computation is carried out with various heat treatment conditions of lead pin material under $20^{\circ}$ bending and 50 mm tension condition. Results show that von Mises stress locally concentrated on lead pin corners and interface between lead pin head and solder. von Mises stress and total strain energy density decrease as heat treatment temperature of lead pin increases. Also, round shaped corner of lead pin decreases both von Mises stress and total strain energy density on interface between lead pin head and solder. This means that PGA package reliability can be improved by changing the mechanical property of lead pin through heat treatment. This has been known that solder fatigue life decreases as total strain energy density of solder increases. Therefore, it is recommended that both optimized lead pin shape and optimized material property with high lead pin heat treatment temperature determine better PGA package reliability.