• Title/Summary/Keyword: Von Neumann set theory

Search Result 2, Processing Time 0.022 seconds

DIRECT SUM, SEPARATING SET AND SYSTEMS OF SIMULTANEOUS EQUATIONS IN THE PREDUAL OF AN OPERATOR ALGEBRA

  • Lee, Mi-Young;Lee, Sang-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 1994
  • Let H be a separable, infinite dimensional, compled Hilbert space and let L(H) be the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of L(H) that contains the identity operator $I_{H}$ and is closed in the ultraweak topology on L(H). Note that the ultraweak operator topology coincides with the wea $k^{*}$ topology on L(H)(see [3]). Bercovici-Foias-Pearcy [3] studied the problem of solving systems of simultaneous equations in the predual of a dual algebra. The theory of dual algebras has been applied to the topics of invariant subspaces, dilation theory and reflexibity (see [1],[2],[3],[5],[6]), and is deeply related with properties ( $A_{m,n}$). Jung-Lee-Lee [7] introduced n-separating sets for subalgebras and proved the relationship between n-separating sets and properties ( $A_{m,n}$). In this paper we will study the relationship between direct sum and properties ( $A_{m,n}$). In particular, using some results of [7] we obtain relationship between n-separating sets and direct sum of von Neumann algebras.ras.s.ras.

  • PDF