• Title/Summary/Keyword: Volumetric modulated arc therapy (VMAT)

Search Result 106, Processing Time 0.022 seconds

Evaluation of Treatment Plan Quality between Magnetic Resonance-Guided Radiotherapy and Volumetric Modulated Arc Therapy for Prostate Cancer

  • Chang Heon Choi;Jin Ho Kim;Jaeman Son;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.121-128
    • /
    • 2022
  • Purpose: This study evaluated the quality of plans based on magnetic resonance-guided radiotherapy (MRgRT) tri-Co-60, linac, and conventional linac-based volumetric modulated arc therapy (linac-VMAT) for prostate cancer. Methods: Twenty patients suffering from prostate cancer with intermediate risk who were treated by MAT were selected. Additional treatment plans (primary and boost plans) were generated based on MRgRT-tri-Co-60 and MRgRT-linac. The planning target volume (PTV) of MRgRT-based plans was created by adding a 3 mm margin from the clinical target volume (CTV) due to high soft-tissue contrast and real-time motion imaging. On the other hand, the PTV of conventional linac was generated based on a 1 cm margin from CTV. The targets of primary and boost plans were prostate plus seminal vesicle and prostate only, respectively. All plans were normalized to cover 95% of the target volume by 100% of the prescribed dose. Dosimetric characteristics were evaluated for each of the primary, boost, and sum plans. Results: For target coverage and conformity, the three plans showed similar results. In the sum plans, the average value of V65Gy of the rectum of MRgRT-linac (2.62%±2.21%) was smaller than those of MRgRT tri-Co-60 (9.04%±3.01%) and linac-VMAT (9.73%±7.14%) (P<0.001). In the case of bladder, the average value of V65Gy of MRgRT-linac was also smaller. Conclusions: In terms of organs at risk sparing, MRgRT-linac shows the best value while maintaining comparable target coverage among the three plans.

Comparison and Evaluation of radiotherapy plans by multi leaf collimator types of Linear accelerator (선형가속기의 다엽콜리메이터 형태에 따른 치료계획 비교 평가)

  • Lim, Ji Hye;Chang, Nam Joon;Seok, Jin Yong;Jung, Yun Ju;Won, Hui Su;Jung, Hae Youn;Choi, Byeong Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.129-138
    • /
    • 2018
  • Purpose : An aim of this study was to compare the effect of multi leaf collimator(MLC) types for high dimension radiotherapy in treatment sites used clinically. Material and Method : 70 patients with lung cancer, spine cancer, prostate cancer, whole pelvis, head and neck, breast cancer were included in this study. High definition(HD) MLC of TrueBeam STx (Varian Medical system, Palo Alto, CA) and millenium(M) MLC of VitalBeam (Varian Medical system, Palo Alto, CA) were used. Radiotherapy plans were performed for each patient under same treatment goals with Eclipse (Version 13.7, Varian Palo Alto USA, CA). To compare the indicators of the radiotherapy plans, planning target volume(PTV) coverage, conformity index(CI), homogeneity index(HI), and clinical indicators for each treatment sites in normal tissues were evaluated. To evaluate low dose distribution, $V_{30%}$ values were compared according to MLC types. Additionally, length and volume of targets for each treatment sites were investigated. Result : In stereotatictic body radiotherapy(SBRT) plan for lung, the average value of PTV coverage was reduced by 0.52 % with HD MLC. With SBRT plan using HD MLC for spine, the average value of PTV coverage decreased by 0.63 % and maximum dose decreased by 1.13 %. In the test of CI and HI, the values in SBRT plan with HD MLC for spine were 1.144, 1.079 and the values using M MLC were 1.160, 1.092 in SBRT plan for lung, The dose evaluation of critical organ was reduced by 1.48 % in the ipsilateral lung mean dose with HD MLC. In prostate cancer volumetric modulated arc therapy(VMAT) with HD MLC, the mean dose and the $V_{30}$ of bladder and the mean dose and the $V_{25}$ of rectum were reduced by 0.53 %, 1.42 %, 0.97 %, and 0.69 %, respectively (p<0.05). The average value of heart mean dose was reduced by 0.83 % in breast cancer VMAT with M MLC. Other assessment indices for treatment sites showed no significant difference between treatment plans with two types of MLC. Conclusion : Using HD MLC had a positive impact on the PTV coverage and normal tissue sparing in usually short or small targets such as lung and spine SBRT and prostate VMAT. But, there was no significant difference in targets with long and large such as lung, head and neck, and whole pelvis for VMAT.

  • PDF

Dosimetric and Radiobiological Evaluation of Dose Volume Optimizer (DVO) and Progressive Resolution Optimizer (PRO) Algorithm against Photon Optimizer on IMRT and VMAT Plan for Prostate Cancer

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee;Eom, Keun-Yong;Song, Changhoon;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.106-114
    • /
    • 2018
  • This study aimed to compare the performance of previous optimization algorithms against new a photon optimizer (PO) algorithm for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans for prostate cancer. Eighteen patients with prostate cancer were retrospectively selected and planned to receive 78 Gy in 39 fractions of the planning target volume (PTV). All plans for each patient optimized with the dose volume optimizer (DVO) and progressive resolution optimizer (PRO) algorithms for IMRT and VMAT were compared against plans optimized with the PO within Eclipse version 13.7. No interactive action was performed during optimization. Dosimetric and radiobiological indices for the PTV and organs at risk were analyzed. The monitor units (MU) per plan were recorded. Based on the plan quality for the target coverage, prostate IMRT and VMAT plans using the PO showed an improvement over DVO and PRO. In addition, the PO generally showed improvement in the tumor control probability for the PTV and normal tissue control probability for the rectum. From a technical perspective, the PO generated IMRT treatment plans with fewer MUs than DVO, whereas it produced slightly more MUs in the VMAT plan, compared with PRO. The PO showed over potentiality of DVO and PRO whenever available, although it led to more MUs in VMAT than PRO. Therefore, the PO has become the preferred choice for planning prostate IMRT and VMAT at our institution.

Analysis of setup error at rectal cancer radiotherapy technique (직장암 방사선치료기법별 자세오차에 관한 분석)

  • Kim, Jeong-Ho;Bae, Seok-Hwan;Kim, Ki-Jin;Yu, Se-Jong;Kim, Jee-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6346-6352
    • /
    • 2013
  • Radiotherapy of rectal cancer requires a stabilized image but the movement of patients is almost unavoidable in radiotherapy. In this study, the setup error using the radiation treatment technique was compared according to the loading time and BMI(Body Mass Index) for 14 patients with rectal cancer. In addition, the variation of the dose by the average setup error was compared. Therefore, the technique of a selective standard was established. As a result, 3DCRT(3-Dimensional Radiation Therapy) and VMAT(Volumetric Modulated Arc Therapy) showed a similar time and error. In comparison, IMRT(Intensity Modulated Radiation Therapy) increased the time two fold and the error four fold. In BMI, a more pyknic patient showed a larger error for all techniques. Regarding the dose, IMRT and VMAT increased much more than 3DCRT in the average error at the small bowel. Therefore, 3DCRT of the short time will be applied to pyknic rectal cancer. Moreover, VMAT selects than IMRT in the overexposure of the small bowel.

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

The Evaluation of Hybrid-Volumetric Modulated Arc Therapy for Lung Cancer Radiation Therapy (폐암 방사선 치료 시 Hybrid-Volumetric Modulated Arc Therapy의 유용성 평가)

  • Lee, Geon Ho;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Du Sang;Ahn, Min Woo;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • Objectives: In the Lung, the VMAT rotates continuously and examines radiation. That increases the low doses to normal lung. Due to that, the incidence of radiation pneumonia among radiation side effects may increase. The cause of radiation pneumonia is the lower dose area of the lungs. The H-VMAT was applied to patients who applied to reduce radiation in the lower doses of the lungs. We wanted to assess the usefulness of the H-VMAT by comparing the radiation doses to the low dose areas of the lungs and the normal organs. Materials and Methods: A total of 26 patients who applied for a H-VMAT procedure were applied to the patient. The prescription dose applied to total dose 44 Gy from 22 divisions. For each patient, a plan was implemented with Conventional RT, VMAT and H-VMAT. Conventional RT was carried out in four to five fields each, considering the size, location, shape, and location of the PTV. In the case of a VMAT plan, the two Half ARC, three Half ARC method and the two Full ARC were planned. The H-VMAT was planned by adding two Static fields in the VMAT, taking into account the dose of the lung and the tolerance dose of the organs. Results: In the NSCLC, the lung doses $V_5$ and $V_{10}$ of the lungs except for the treatment plan volume were the lowest with $55.40{\pm}13.39%$ and $32.05{\pm}11.37%$ of H-VMAT. And, in the SCLC, the lung doses of V5 and V10 were the lowest at $64.32{\pm}16.15%$ and $35.50{\pm}9.91%$, respectively. The spinal dose of VMAT in NSCLC was $21.15{\pm}4.02Gy$, which was 7.94 Gy lower than other treatment methods. The lowest spinal dose was delivered at $19.72{\pm}1.82Gy$ for SCLC. The mean dose delivered to the esophagus was also $17.44{\pm}2.04Gy$ and $17.84{\pm}9.20Gy$ in SCLC and NSCLC, respectively. Conclusion: When comparing the value of the surrounding normal organ dose, the VMAT showed that less doses were transmitted from the heart, esophagus and spinal cord than the rest of the treatment plan. However, it was similar to VMAT in normal organs except for the spinal cord. VMAT has increased doses of some normal organs but did not exceed the tolerance dose. It showed a low value in $V_5$, $V_{10}$. When comparing Conventional RT, VMAT, and H-VMAT, If the dose to the heart, esophagus and spinal cord is lower than the tolerance dose, it is thought to reduce the incidence of radiation pneumonia by applying H-VMAT that show the benefits of low doses of the lungs.

  • PDF

The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119 (AAPM TG-119 보고서를 통한 세기조절방사선치료(IMRT)와 부피적세기조절회전치료(VMAT)의 치료 전 환자별 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Kim, Jong-Ha;Park, Seung;Lee, Keun-Sub;Sohn, Seung-Chang;Shin, Young-Joo;Kim, Yon-Lae
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H&N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was $1.24{\pm}2.06%$ and $1.4{\pm}2.9%$ for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was $2.06{\pm}0.64%$ and $2.21{\pm}0.74%$ for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were $98.3{\pm}1.5%$ and the confidence limits were 3.78%. In case of VMAT, the average percentage were $98.2{\pm}1.1%$ and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

A Comparative Evaluation of Dosal Usefulness in Total Scalp Irradiation according to Treatment Plans and Methods (총 두피 방사선치료 시 치료계획 방법에 따른 선량적 유용성 비교 평가)

  • Park byeal nim;Jung dong min;Kwon yong jae;Cho yong wan;Kim se young;Park kwang soon;Park ryeong hwang;Baek jong geol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.43-50
    • /
    • 2022
  • Objective: The purpose of this study is to choose a treatment plan and equipment to maximize tangential irradiation to protect the normal brain tissues as much as possible during total scalp irradiation. Subjects and Methods: After zoning the total scalp of a phantom and selecting a target area for treatment, the study made a Helical TomoTherapy(HT) plan, a Helical TomoTherapy with a Complete Block(HTCB) plan, and a Volumetric Modulated Arc Therapy(VMAT) plan. All of these plans made sure that the volume of a treatment plan with 95% of a prescription dose(40 Gy) would not exceed 95% of the entire volume and that Dmax would not be more than 110% of the prescription dose. The therapy plans compared doses among organs at risk of damage including the brain. Doses in the brain tissues were assessed based on the volumetric criteria for normal tissues in Emami et al. Results: HT, HTCB, and VMAT had a dose of 21.68 Gy, 13.75 Gy, and 20.89 Gy, respectively, in brain tissues at D33%, a dose of 7.06 Gy, 3.21 Gy, and 7.84 Gy, respectively, at D67%, and a dose of 3.14 Gy, 1.75 Gy, and 3.84 Gy, respectively, at D100%. They recorded a Dmean of 16.64 Gy, 11.78 Gy, and 16.64 Gy, respectively. These results show that the overall dose was low in the HTCB plan. When the volume of a low dose was calculated based on 5 Gy, they recorded 87%, 49%, and 96%, respectively, in V5Gy. In addition, the maximum dose in the remaining organ(brain stem, hippocampus, and both lenses) except for the optic pathway was the lowest in HTCB Conclusion: The findings demonstrate that TomoTherapy with a complete block minimized a dose in organs at risk of damage including the brain and hippocampus on both sides and accordingly reduced the probability of side effects such as radiation-induced brain injuries and a resulting decrease in neurocognitive functions. In addition to total scalp irradiation, if additional studies on ring targets treated in various areas are conducted to establish the benefits of tangential irradiation, it is believed that TomoTherapy using Complete Block can be used to maximize tangential irradiation in treatment planning.

Effectiveness Assessment on Jaw-Tracking in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Esophageal Cancer (식도암 세기조절방사선치료와 용적세기조절회전치료에 대한 Jaw-Tracking의 유용성 평가)

  • Oh, Hyeon Taek;Yoo, Soon Mi;Jeon, Soo Dong;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose : To evaluate the effectiveness of Jaw-tracking(JT) technique in Intensity-modulated radiation therapy(IMRT) and Volumetric-modulated arc therapy(VMAT) for radiation therapy of esophageal cancer by analyzing volume dose of perimetrical normal organs along with the low-dose volume regions. Materials and Method: A total of 27 patients were selected who received radiation therapy for esophageal cancer with using $VitalBeam^{TM}$(Varian Medical System, U.S.A) in our hospital. Using Eclipse system(Ver. 13.6 Varian, U.S.A), radiation treatment planning was set up with Jaw-tracking technique(JT) and Non-Jaw-tracking technique(NJT), and was conducted for the patients with T-shaped Planning target volume(PTV), including Supraclavicular lymph nodes(SCL). PTV was classified into whether celiac area was included or not to identify the influence on the radiation field. To compare the treatment plans, Organ at risk(OAR) was defined to bilateral lung, heart, and spinal cord and evaluated for Conformity index(CI) and Homogeneity index(HI). Portal dosimetry was performed to verify a clinical application using Electronic portal imaging device(EPID) and Gamma analysis was performed with establishing thresholds of radiation field as a parameter, with various range of 0 %, 5 %, and 10 %. Results: All treatment plans were established on gamma pass rates of 95 % with 3 mm/3 % criteria. For a threshold of 10 %, both JT and NJT passed with rate of more than 95 % and both gamma passing rate decreased more than 1 % in IMRT as the low dose threshold decreased to 5 % and 0 %. For the case of JT in IMRT on PTV without celiac area, $V_5$ and $V_{10}$ of both lung showed a decrease by respectively 8.5 % and 5.3 % in average and up to 14.7 %. A $D_{mean}$ decreased by $72.3{\pm}51cGy$, while there was an increase in radiation dose reduction in PTV including celiac area. A $D_{mean}$ of heart decreased by $68.9{\pm}38.5cGy$ and that of spinal cord decreased by $39.7{\pm}30cGy$. For the case of JT in VMAT, $V_5$ decreased by 2.5 % in average in lungs, and also a little amount in heart and spinal cord. Radiation dose reduction of JT showed an increase when PTV includes celiac area in VMAT. Conclusion: In the radiation treatment planning for esophageal cancer, IMRT showed a significant decrease in $V_5$, and $V_{10}$ of both lungs when applying JT, and dose reduction was greater when the irradiated area in low-dose field is larger. Therefore, IMRT is more advantageous in applying JT than VMAT for radiation therapy of esophageal cancer and can protect the normal organs from MLC leakage and transmitted doses in low-dose field.

Reproducibility evaluation of the use of pressure conserving abdominal compressor in lung and liver volumetric modulated arc therapy (흉복부 방사선 치료 시 압력 기반 복부압박장치 적용에 따른 치료 간 재현성 평가)

  • Park, ga yeon;Kim, joo ho;Shin, hyun kyung;Kim, min soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: To evaluate the inter-fractional position and respiratory reproducibility of lung and liver tumors using pressure conserving type(P-type) abdominal compressor in volumetric modulated arc therapy(VMAT). Materials and methods: Six lung cancer patients and three liver cancer patients who underwent VMAT using a P-type abdominal compressor were included in this study. Cone-beam computed tomography(CBCT) images were acquired before each treatment and compared with planning CT images to evaluate the inter-fractional position reproducibility. The position variation was defined as the difference of position shift values between target matching and bone matching. 4-dimensional cone-beam computed tomography(4D CBCT) images were acquired weekly before treatment and compared with planning 4DCT images to evaluate the inter-fractional respiratory reproducibility. The respiratory variation was calculated by the magnitude of excursions by breathing. Results: The mean ± standard deviation(SD) of overall position variation values, 3D vector in the three translational directions were 1.1 ± 1.4 mm and 4.5 ± 2.8 mm for the lung and liver, respectively. The mean ± SD of respiratory variation values were 0.7 ± 3.4 mm (p = 0.195) in the lung and 3.6 ± 2.6 mm (p < 0.05) in the liver. Conclusion: The use of P-type compressor in lung and liver VMAT was effective for stable control of inter-fractional position and respiratory variation by reproduction of abdominal compression. Appropriate PTV margin must be considered in treatment planning, and image guidance before each treatment are required in order to obtain more stable reproducibility