• Title/Summary/Keyword: Volumetric measurement

Search Result 239, Processing Time 0.024 seconds

Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Center Using Hemispherical Helix Ball Bar Test (반구상의 나선형 볼바측정을 통한 수직형 머시닝 센터의 오차 해석 및 보정)

  • Yang, Seung-Han;Kim, Ki-Hoon;Park, YongKuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.34-40
    • /
    • 2002
  • Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.

FSP measurement of heat-treated softwoods using volumetric swelling method (부피팽창율법을 이용한 침엽수 열처리 목재의 섬유포화점 측정)

  • Kang, Chun-Won;Lee, Seung-Jin;Kang, Ho-Yang
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.183-187
    • /
    • 2012
  • Specimens of five softwood species were heat-treated at three temperature levels of $170^{\circ}C$, $190^{\circ}C$ and $210^{\circ}C$. Their FSP's were measured by the volumetric Swelling Method. Within a species the FSP decreases as the temperature of heat treatment increases. The FSP's of the controls range from 21.0% to 32.5%, while those of the specimens heat-treated at $210^{\circ}C$ from 18.7% to 35.3%. There was no difference of basic density between the heat-treated and control specimens.

DEVELOPMENT OF COMPUTER SOFTWARE FOR CALCULATION OF VOLUMETRIC ERROR MAP IN 3 AXIS CMMs

  • Park, H.;M.Burdekin;G.Peggs
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.131-158
    • /
    • 1992
  • Verification, calibration, and compensation are becoming more essential elements for manufacture and maintenance of high performance CMMs. A computer module of volumetric error generation has been developed to calculate volumetric errors (random as well as systematic) from measured parametric errors, accepting most types of CMMs in current use. New transformation rules have been derived to transform all the parametric errors with respect to the origin of working volume considered, then incorporated, then incorporated into the module of error calculation. Two cases of practical CMMs are tested with the developed module, and showed good performance.

  • PDF

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • 황병화;황수진
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.427-435
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There's a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07m3m-3 for sand, 0.l1m3m-3 for loam, 0.12 for clay, and 0.13m3m-3 for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)'s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter. Key words : SMAP(Surface Moisture Availability Parameter), Paddy field, Volumetric soil water content, Evaporation, Capillary potential.

  • PDF

Characterization of Increases in Volumetric Water Content in Soil Slopes to Predict the Risk of Shallow Failure (토사비탈면 표층붕괴 위험 예측을 위한 체적함수비 증가 특성 연구)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Choi, Sun-Gyu;Jeong, Hyang-Seon;Song, Hyo-Sung
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.485-496
    • /
    • 2020
  • The characteristics of volumetric water content changes in soil slopes were studied here in an effort to identify the signs of heavy rain causing shallow slope failure. Volumetric water contents in cases with and without shallow failure were measured in flume and test-bed experiments. Measurement data from 282 experiments of both types revealed that the volumetric water content gradient in shallow failure events ranged from 0.072 to 0.309. In non-failure cases, the range was 0.01~0.32. Therefore, this one specific value cannot predict shallow slope failure. However, as the volumetric water content gradient increased, there was a clear tendency to shallow failure. By using this trend, criteria for four warning levels are suggested.

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators (가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상)

  • Juhee Ko;Jungchul Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.39-43
    • /
    • 2023
  • Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

Evaluation of Oil Infiltration Behavior in Porous Media Using Dielectric Response (유전율에 의한 지반 매질내 유류침투거동 분석)

  • Kim Man-Il;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 2005
  • For detecting a ground contamination survey, soil sampling method have been used a drilling or coring technique in general. However these methods are very difficult to systematically real-time monitoring of variation of contamination degree in field. ]'n this research frequency Domain Reflectometry (FDR) system was suggested and carried out to experimental approaches for determination of oil contamination on surface and underground. Experimental method using FDR method was discussed with feasibility of measurement in the laboratory column test. It is determined to degree of oil contamination due to response of dielectric constant re-lated with volumetric water content(θ/sub w/) and volumetric oil content( θ/sub al/ ) of saturated and unsaturated soil media. And physical properties such as effective porosity and oil residual ratio of saturated soil media were also measured through real-time monitoring works using installed FDR measurement sensors, which are defected characteristics of oil movement in the saturated soil media under the soil column tests. In the results of these experiments, a range of effective porosity was estimated to about 0.35 compared with initial porosity 0.40 of manufactured saturated soil media, which is also calculated to about 87.5% to the ratio of initial porosity to effective porosity. Finally oil residual ratio which is compared with volumetric water content and volumetric oil content was calculated about 62.5%.

Establishment on the Monitoring System for Unsaturated Characteristics Variation in a Mine Waste-Dump Slope (광산폐기물 적치사면의 불포화 특성변화 모니터링 시스템 구축)

  • Song, Young-Suk;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.49-55
    • /
    • 2016
  • Field measurement units and a system were constructed and installed in a waste-dump slope at the Imgi mine to investigate and analyze the variations in the unsaturated characteristics of the soil. The field instrumentation system was composed of a data acquisition system (DAS), a solar system, and measuring sensors. The rainfall, matric suction, and volumetric water contents were continuously measured from the units in the instrumented site. The variations in matric suction and volumetric water content were primarily affected by the rainfall intensity. At the surface of the slope, the largest increase and decrease in the changes in matric suction and volumetric water content were observed during the wetting and drying processes, respectively. Also, the matric suction and volumetric water content were 5-35 kPa and 0.12-0.24, respectively. However, the ground water level was not suddenly increased just after rainfall but gradually increased after 2 or 3 days later.