• Title/Summary/Keyword: Volumetric

Search Result 2,100, Processing Time 0.026 seconds

A Generalized Volumetric Error Modeling Considering Backlash in Machine Tools (방향성을 고려한 일반화된 공작기계의 입체오차 모델링)

  • Ahn, Kyoung-Gee;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.124-131
    • /
    • 2002
  • In this paper, an extended volumetric error model considering backlash in a three-axis machine tool was proposed and utilized for calculating the volumetric error of the machine tool at any position in three-dimensional workspace. Backlashes are interrelated; i.e. the angular backlash affects the straightness errors which then affect talc calculated squareness errors. Therefore, a new concept was introduced to define the backlash of squareness errors to incorporate the backlash of squareness error into the volumetric error, and the characteristics of the backlash of squareness error were investigated. The effects of backlash errors were assessed, by experiments. for 21 geometric errors of a machine tool. The backlash error was shown to be one of the systematic errors of a machine tool. And a generalized volumetric error model formulator for three-axis machine tools was developed, which allowed us to formulate machine tool synthesis error models far all possible machine tool configurations only with machine tool topology information. Based on these volumetric error model and model formulator, a computer-aided volumetric error analysis system was developed for a three-axis machine tool in this paper. Then the volumetric error at an arbitrary position can be obtained, and displayed in a three-dimensional graphic form.

A Study on the Amelioration of Volumetric Efficiency by Variable Induction System in a Diesel Engine (가변 흡기시스템에 의한 디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2006
  • A three-degree of freedom model of intake system was contrived and investigated in various ways for the purpose of the amelioration of the volumetric efficiency in a low and transient engine speed for a multi cylinder diesel engine. The basic concept beyond this model started from the theory that each degree of freedom model has volumetric efficiency peak as many as its number of the degree of freedom. The volumetric efficiency affects significantly to the engine performance; torque characteristics, fuel economy and emission level. For commercial vehicles and stationary engines, the engine is designed so as to produce their best performance near the normal engine speeds, thus the low engine speed area has a tendency of poor volumetric efficiency. The aim of this study was highlighted on the amelioration of volumetric efficiency of low engine speed area in a multi cylinder diesel engine matched with an additional Helmholtz resonator. By the use of VIS(variable induction system) volumetric efficiency at low engine speed range was significantly improved. The availability of control by combination of VIS and CIS(conventional induction system) will be proposed as a variable induction system that would be an appropriate model for amelioration of the volumetric efficiency at low engine speed.

  • PDF

Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool (5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘)

  • Yang, Seung-Han;Lee, Chul-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

A Study on the Volumetric Error Equation of Coordinate Measuring Machines and their Application (3차원 좌표측정기(CMM)의 오차방정식 유도에 관한 연구)

  • 이응석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1545-1553
    • /
    • 1995
  • For general geometry of Coordinate Measuring Machine (CMM), volumetric error equation including 21 systematic error components was showed using vector expression. Different types of CMM listed on an international standard (BS 6808) were classified according to their geometry, and the general volumetric error equation was used for the CMMs. Application of volumetric error equation was also introduced, such as position error compensation, error equation of CNC-machine and parametric error analysis, etc.

The Effect of Intake and Exhaust Pulsating Flow on the Volumetric Efficiency in a Diesel Engine (디젤기관의 흡.배기관 맥동류가 체적효율에 미치는 영향)

  • Lee, S.D.;Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-16
    • /
    • 2006
  • The pressure fluctuation in the intake and exhaust pipe of 4 stroke-cycle diesel engine is caused by reciprocating motion of piston for suction of fresh air and exhaust of burned gas. this gas dynamic effect can be utilized for increase the volumetric efficiency. Many empirical studies have been carried out to investigate the effects of intake pulsating flow on the volumetric efficiency. However, when the gas dynamic effects are utilized for the variable speed engine to increase its performance, The speed range in which the maximum volumetric efficiency is limited and there occurs some difficulties in lay-out of intake system because it become too long. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow becomes more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on the volumetric efficiency. In this paper the effects of pulsating flow of intake and exhaust pipes on volumetric efficiency were examined and evaluated. It was found that volumetric efficiency was affected by pulsating flow of intake and exhaust pipes.

  • PDF

Analysis of 3D Volumetric Error for Machine Tool using Ball Bar (볼바를 이용한 공작기계의 3차원 공간오차 해석)

  • Lee, Ho-Young;Choi, Hyun-Jin;Son, Jae-Hwan;Lee, Dal-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. Therefore, it is very important to assess errors in machine tools. Volumetric error analysis has been developed by many researchers. This paper presents a useful technique for analyzing the volumetric errors in machine tools using the ball bar. The volumetric error model is proposed in specific vertical machining center and the program is developed for generating NC code, acquiring the ball bar data, and analyzing the volumetric errors. The developed system assesses the volumetric errors such as positional, straightness, squareness, and back lash. Also this system analyzes the dynamic performance such as servo gain mismatch. The radial data acquired by ball bar on 3D space is used for analyzing these errors. It is convenient to test the volumetric errors on 3D space because all errors are calculated at once. The developed system has been tested using an actual vertical machining center.

Estimation of a Volumetric Error of a Machine Tool Considering the Moving Direction of a Machine Tool (방향성을 고려한 공작기계 입체오차의 평가)

  • 안경기;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.676-680
    • /
    • 2000
  • In this paper, an extended volumetric error model considering backlash in a three-axis machine tool was proposed and utilized for calculating the volumetric error of the machine tool at any position in three-dimensional workspace. Backlashes are interrelated; i.e. the angular backlash affects the straightness errors which then affect the calculated squareness errors. Therefore, a new concept was introduced to define the backlash of squareness errors to incorporate the backlash of squareness error into the volumetric error, and the characteristics of the backlash of squareness error were investigated. The effects of backlash errors were assessed, by experiments, fur 21 geometric errors of a machine tool. The backlash error was shown to be one of the systematic errors of a machine tool. Based on this volumetric error model, a computer-aided volumetric error analysis system was developed for a three-axis machine tool in this paper. Then the volumetric error at an arbitrary position can be obtained, and displayed in a three-dimensional graphic form.

  • PDF

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

A STUDY ON THE VOLUMETRIC EFFICIENCY OF HIGH SPEED MULTI-CYLINDER AND ROTARY COMPRESSOR (고속다기통 및 회전식 압축기의 체적효율)

  • OH Hoo Kyu;CHO Kweoun Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 1979
  • Volumetric efficiency is a determining factor for tile measurement of compessor capacity, but it is practically hard to take an accurate measurement of capacity characteritics so that most of users trust the data of makers catalogue. We often realized the discrepancy in their data with actual capacity. This study was attemped to establish the basic data of capacity characteristics of compressor by measuring volumetric efficiency of high speed multi-cylinder compressor and rotary compressor. The volumetric efficiency was calculated based on the quantity of the flow of ammonia vapor and pressure difference in suction state of orifice plate and compressor. The volumetric efficiency of high speed multi-cylinder compressor was $37-61\%$ and that of rotary compressor was $57-82\%$ when compression ratio was in the range of 4-12. The discrepancy in volumetric efficiency at an equal evaporating temperature between the makers catalogue and the measured data was $5.5\%$.

  • PDF

Effects of the Method of Changing Compression Ratio on Engine Performance in an SI Engine (가솔린 엔진에서 압축비 변경 방법이 성능에 미치는 영향)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.27-33
    • /
    • 2001
  • In this study, it is observed that the distribution of combustion chamber volume affects the volumetric efficiency. The distribution ratio was adjusted by controlling combustion chamber volume of head and piston bowl one. Four cases were investigated, which are the combination of different distribution ratios and different compression ratios (9.8-10.0). A commercial SOHC 3-valve engine was modified by cutting the bottom face of the head and/or replacing the piston by the one that has different volume. The result shows that the less the head side volume, the more volumetric efficiency is achieved under the same compression ratio. It is also observed that increasing volumetric efficiency results in early knock occurrence due to increased "real" compression ratio. To consider reliability in estimating the volumetric efficiency, we examined the sensitivity of the AFR equation to possible errors in emission measurements. It is shown that the volumetric efficiency, which is calculated by measuring AFR and fuel consumption, can be controlled in 1% error. 1% error.

  • PDF