• Title/Summary/Keyword: Volume-of-Fluid (VOF)

Search Result 211, Processing Time 0.028 seconds

A Numerical Analysis of the Behavior of the Free Surface in a Moving Cup (이송되는 컵 내부의 자유 표면의 거동 특성에 대한 수치해석)

  • Hong, Tae-Hyub;Chae, Hee-Moon;Kim, Chyang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2997-3002
    • /
    • 2007
  • A manipulator is operated for the motion of mechanical hands or arms by mechanical mechanism. When a cup including liquid inside is shifted by a manipulator, it is important to know how a free surface of the liquid moves. In this study, non-dimensional parameters have been found that affect the rise of the free surface in a cup moving with constant acceleration. The non-dimensional parameters are the dimensionless time, the ratio of inertia effect to vicous effect (Reynolds number), aspect ratio of the liquid inside the cup and acceleration ratio (Froude number). Through this study, the height of the free surface rise in a cup has been predicted. Generally the maximum rise of the free surface is dependent on the Reynolds number and Froude number strongly, but on the aspect ratio weakly. But the influence of the aspect ratio on the maximum rise of the free surface in not negligible in the range 10 < Re < 100.

  • PDF

A numerical study on sloshing impact loads in prismatic tanks under forced horizontal motion

  • Parthasarathty, Nanjundan;Kim, Hyunjong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.150-155
    • /
    • 2017
  • Many engineering issues are caused because of sloshing phenomena. Numerical solution methods including the computational fluid dynamics (CFD) technique, are used to analyze these sloshing problems. In this study, a numerical technique was used to analyze sloshing impact loads in a prismatic tank under forced horizontal motion. The volume-of-fraction (VOF) method was adopted to model the sloshing flow. Six cases were used to compare the effects of the natural frequencies of a simple rectangular and prismatic tank, with impact pressure on the prismatic tank wall. This study also investigated the variable pressure loads and sloshing phenomena in prismatic tanks when the frequencies were changed. The results showed that the average of the peak pressure value for ${\omega}^{\prime}1=4.24=4.24$ was 22% higher than that of ${\omega}_1=4.6$.

Analysis of Weld Pool Flow and Shape Considering the Impact of Droplets in GMAW (GMAW에서 용적입사를 고려한 용융지 유동 및 형상해석)

  • 박현성;이세현;엄기원
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.40-47
    • /
    • 1998
  • In the present study, depressions of the GMA weld pool due to the impact of droplet are numerically investigated. The numerical simulation is conducted on the basis of the Navier-Stokes equation and the volume of fluid(VOF) functions. The kinetic energy of transferring droplet makes a depression of the weld pool surface. The surface active element affects the depression of the weld pool. The droplets transferred efficiently to the bottom of the weld pool, along with electromagnetic force make the finger shape penetration at the high current GMAW.

  • PDF

Numerical Study on the Extrapolation Method for Predicting the Full-scale Resistance of a Ship with an Air Lubrication System

  • Kim, Dong-Young;Ha, Ji-Yeon;Paik, Kwang-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2020
  • Frictional resistance comprises more than 60% of the total resistance for most merchant ships. Active and passive devices have been used to reduce frictional resistance, but the most effective and practical device is an air lubrication system. Such systems have been applied in several ships, and their effects have been verified in sea trials. On the other hand, there are some differences between the results predicted in model tests and those measured in sea trials. In this study, numerical analyses were carried out for a model and a full-scale ship. A new extrapolation method was proposed to improve the estimation of the full-scale resistance of a ship with an air lubrication system. The volume of fluid (VOF) method was considered for the numerical models of the air layer. The numerical method was validated by comparing the experimental data on the air layer pattern and the total resistance.

Analysis of Wave Pressure of Irregular Waves in front of a Breakwater (방파제 전면부에서의 불규칙파의 파압해석)

  • Woo Jong Hyub;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1073-1077
    • /
    • 2005
  • In this study, wave pressure is calculated by using irregular waves in front of a breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-{\varepsilon}$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. The results of two cases present that wave pressure change due to irregular wave similar to wave height of irregular wave. It is observed that wave pressure of Case 2 more bigger than wave pressure of Case 1 at the same position.

  • PDF

A Study on the Keyhole Dynamics According to Polarization of Laser (레이저의 편광을 고려한 키홀 거동 해석에 관한 연구)

  • Cho, Jung-Ho;Na, Suck-Joo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1307-1311
    • /
    • 2007
  • Three-dimensional transient keyhole profile is numerically analyzed for the case of stationary laser keyhole welding. Volume of fluid (VOF) method is adopted to track the free surface of molten metal based on the three governing equations which are continuity, momentum and energy equations. Multiple reflections of laser beam at the keyhole walls are also included in analysis through a real-time ray tracing technique. In this simulation, especially, polarization of laser is considered as an energy absorption mechanism following the Fresnel reflection theory. Both cases of linearly and circularly polarized beam are simulated and compared. The results show that the theoretically generated keyhole is asymmetrically stretched along the direction of polarization which is already observed experimentally before.

  • PDF

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

Optimal Design on a Channel of Rectangular Suction Sludge Collector and the Flow Characteristics of Wastewater (장방형 흡입식 슬러지 수집기에서 수로의 최적설계 및 폐수 유동특성)

  • Yong, Jung-Kwon;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1034-1039
    • /
    • 2008
  • Recently, the sludge suction collector is preferred rather than the scraper type sludge collector due to enhancement of the clarifier efficiency. The sludge suction collector is usually operated by the user's experience without any scientific and technical consideration. There are many factors that should be considered for higher quality of discharged water and stabilized flow in the rectangular sludge suction collector but, the optimal design on the inflow channel and orifices connecting with the inflow channel is needed for similar flow rates at the orifices. The 4 cases of channel geometry are considered and mass flow rates of each case at the orifices are evaluated using Computational Fluid Dynamics applied VOF(Volume of Fraction) model.

  • PDF

Investigation on Metal Transfer in GMA Welding through Dimensional Analysis (차원 해석을 통한 GMA 용접의 금속이행 현상에 관한 분석)

  • 최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.62-70
    • /
    • 1999
  • Since various parameters including the welding conditions and material properties are involved in metal transfer, it is difficult to figure out the effects of each parameter. In this study, dimensional analysis in performed to reduce the number of the parameters and to reveal the effect of each parameter on metal transfer. Dimensionless parameters are derived based on the inertia force and surface tension, and their contributions on metal transfer are estimated by analyzing the calculated results using the volume of fluid (VOF) method. Among several dimensionless parameters, $N_{SE}(=$\mu$_{0}I^{2}/d_{w}${\gamma}$)$ which represents the ratio of the electromagnetic force to surface tension, is found to be appropriate to describe metal transfer and estimate the transition current. Predicted results of transition current and drop size are in reasonably good agreements with available experimental date which show the validity of proposed dimensional analysis.

  • PDF

TRANSIENT FLOW SIMULATION OF A MIXER WITH FREE SURFACE (자유표면을 고려한 교반기 내부의 비정상 유동해석)

  • Ahn, Ick-Jin;Song, Ae-Kyung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.9-13
    • /
    • 2006
  • In the present study, a numerical analysis of transient mixer flow is performed considering free surface formation. The flow patterns and free surface shape in a mixers formed by flat paddle and pitched paddle impellers are predicted. In a flat paddle mixer, two flow circulation regions are formed due to strong radial flow, whereas one large circulation is formed in a pitched paddle mixer due to axial downward flow. These differences affect the free surface evolution and shape. It is seen from the results that a flat paddle mixer gives deeper free surface at center region than a pitched paddle mixer. The free surface of 8-blades-flat-paddle mixer is also simulated to compare with the available experimental and simulation results. The present computational results agree reasonably well with the experimental data.