• Title/Summary/Keyword: Volume-of-Fluid

Search Result 1,416, Processing Time 0.03 seconds

The Effects of sumgmagalguntanggamibang(SMG) on the Immunocyte and Serum IgE in the Murine of type I Hypersensitivity Induced by the Experiment (升麻葛根湯加味方이 제I형 알레르기를 실험적으로 유발한 흰쥐의 免疫細胞및 血淸IgE에 미치는 영향)

  • Gang, Gi-Hong;Kim, Yun-Beom;Chae, Byeong-Yun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.14 no.1
    • /
    • pp.129-153
    • /
    • 2001
  • Background: SMG (升麻葛根湯加味方) is an herbal medicine which has been used in oriental medicine as a traditional therapeutic agent of pruritus and skin disease. Objective: This study was performed to investigate the effect of SMG on the anti-hypersensitivity and immune response in the murine of type I hypersensitivity induced by the experiment. Materials and Methods: Laboratory rats were primary sensitized with OA (ovalbumin); on day 1, rats of a Control group and Sample group (SMG group) were systemically immunized by subcutaneous injection of 1mg OA and 300mg of Al(OH)3 in a total volume of 2ml saline. The rats of the sample group were orally administered with an SMG water extract for 14 days after primary immunization. On day 14 after the systemic immunization, rats received local immunization by inhaling $0.9\%$ saline aerosol containing $2\%$(wt/vol) OA. A day after local immunization, BAL fluid and peripheral blood were collected from the rats. Total cell, lymphocyte, $CD4^+\;T\;cell,\;CD8^+\;T\;cell,\;CD4^+/CD8^+$ ratio in the BALF, and IgE, $CD4^+\;T\;cell,\;CD8^+$ T cell in the peripheral blood were measured and evaluated. Results: SMG showed a suppressive effect on the immune response in the rats. 1. Total Cells in the BALF decreased in the SMG treated group in comparison group, but statistic differences were not observed. 2. Total lymphocytes in the BALF were statistically decreased in SMG treated group in comparison to the control group. 3. CD4+ T cells in the BALF were statistically decreased in SMG treated group in comparison to the control group. 4. CD8+ T cells in the BALF were decreased in SMG treated group in comparison to the control group, but statistic differences were not observed. 5. The ratio of CD4+/CD8+ in the BALF was statistically decreased in SMG treated group in comparison to the control group. 6. The IgE level in serum was statistically decreased in SMG treated group in comparison to the control group. 7. The ratio of CD4+ and CD8+ in peripheral blood showed undetectable differences between each group of rats. From the experiment cited above, this study shows that SMG has both anti-hypersensitivity effects and immunoregulatory effects when administered to rats. Based on this experiment, it is suggested that SMG could be a useful immunomodulator and anti-allergy agent.

  • PDF

Astronomical Calendar and Restoration Design of Clepsydra in the Silla era (신라시대 천문역법(天文曆法)과 물시계(漏刻) 복원연구)

  • Lee, Yong-Sam;Jeong, Jang-Hae;Kim, Sang-Hyuk;Lee, Yong-Bok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.299-320
    • /
    • 2008
  • We study on the astronomical calendars that was used in the Silla era. The calendars are deduced from the records in Samguksagi. They were influenced from calendaric system of Tang Dynasty, which are Lin duk calendar(麟德曆), Ta yen calendar(大衍曆) and Sun myung calendar(宣明曆). We analyse them in detail according to the time and duration of use. Water clock system of Unified Silla was used four water vessels for supplying water. We found the model from documents on ancient water clock that are appeared in the old Korean, Chinese and Japanese historical records. We have assumed the model of Unified Silla clepsydra is similar type with Chinese records during Tang dynasty and with Japanese reconstructed water clock in Temple Asoka. After fluid dynamic experiment, we decide the suitable diameter of supplying pipe and volume of the vessels used in the clepsydra. We introduce the experimental instruments and methods for accomplishing the clock. We designed and reconstructed the water clock of Unified Silla and float rods for measuring time, that is based on the Silla's calendaric system.

A study for headaches and backaches occurrence after diagnostic lumbar puncture in children (소아에서 척수액 검사 후 발생하는 두통과 요통에 대한 연구)

  • Choi, In Young;Park, Kyong Yun;Jang, Young Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.7
    • /
    • pp.751-756
    • /
    • 2006
  • Purpose : Our goals were to determine the frequency of headaches and backaches occurring as a side effect following lumbar puncture in children, and to investigate various factors that might influence the frequency of headaches and backaches. Methods : From October 2004 to February 2006, we enrolled 148 patients aged 2 to 15 years who received diagnostic lumbar puncture at the Presbyterian Medical Center, Chonju, Korea. Patient data were collected for age, sex, number of puncture attempts, volume of cerebrospinal fluid(CSF), bevel orientation of puncture needle, cell count in CSF, periods of absolute bed rest, and the frequency and duration of headaches and backaches. Results : Headaches occurred in 8 patients and backaches occurred in 40 patients. Headaches were found both to occur significantly more frequently in patients over age 10 and to last longer when the bevel orientation of the puncture needle was inserted toward the cranium rather than laterally. Backaches lasted longer in males than in females. The other factors evaluated showed no relationship at all to the frequency and duration of headaches and backaches. Conclusion : Following lumbar puncture, headaches were common in patients over age 10, and lasted longer when the bevel orientation was toward the cranium. Backaches lasted longer in males than in females. In light of these findings, we recommend taking special care when performing lumbar puncture for CSF examination in patients over age 10.

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.

Numerical Study on the Baffle Structure for Determining the Flow Characteristic in Small Scale SCR System (소형 SCR 시스템 내 유동 제어를 위한 Baffle의 구조 결정에 관한 수치해석적 연구)

  • Park, Mi-Jung;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.862-869
    • /
    • 2010
  • Numerical analysis was done to evaluate the gas flow distribution in small scale SCR system which has $2.4{\times}2.4{\times}3.1\;m^3$ in volume and 25,300 Sm3/hr in flue gas flow capacity. Various types of baffles proposed for controlling the flow uniformity were evaluated by the CFD analysis to find the optimal geometry of the baffle in the SCR system. By installing baffles in the SCR system, the RMS (%) value was raised up to 6.2% compared with the baffle-uninstalled state. The effect of baffle thicknesses on the RMS (%) value was not shown within 0 and 8 mm in thickness, but the RMS (%) value was raised by 2.5% in 10 mm of baffles thickness, which causes the unstability in flow. By comparison between the shape of baffles, it is known that the lattice type baffle has better performance in controlling the flow uniformity than the circular truncated cone type baffle or mixer type baffle. RMS (%) values have more that 10% difference according to the shape of baffle type.

Assessment for Inhalation Exposure to Trihalomethanes (THMs) and Chroline and Efficiency of Ventilation for an Indoor Swimming Pool (일개 실내수영장의 공기 중 염소 및 트리할로메탄의 노출평가 및 환기 효율 평가)

  • Park, Hae-Dong;Park, Hyun-Hee;Shin, Jung-Ah;Kim, Tae-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.402-410
    • /
    • 2010
  • The objectives of this study were to evaluate the air quality surrounding an indoor swimming pool, to estimate the cancer risk based on the airborne exposure to trihalomethanes (THMs), and to examine the ventilation efficiency by Computational Fluid Dynamics (CFD). Chlorine and THMs were measured poolside, and in the staff room and reception area. The indoor swimming pool was modeled using the Airpak program, with ventilation drawings and actual survey data. Temperature, flow and mean age of the air were analyzed. Levels of chlorine poolside, and in the staff room, and reception area were $203\;{\mu}g/m^3$, $5\;{\mu}g/m^3$, and $10\;{\mu}g/m^3$, respectively. Chloroform was the dominant THM in all sampling sites and mean concentrations were $16.30\;{\mu}g/m^3$, $0.51\;{\mu}g/m^3$, and $0.06\;{\mu}g/m^3$ poolside, in the staff room and reception area, respectively. Bromodichloromethane and Dibromochloromethane levels were respectively estimated as $10.3\;{\mu}g/m^3$ and $1.7\;{\mu}g/m^3$ poolside, $1.3\;{\mu}g/m^3$ and $0.1\;{\mu}g/m^3$ in the staff room, and were not detected in the reception area. The cancer risks from inhalation exposure to THMs were estimated between $3.37{\times}10^{-7}$ and $1.84{\times}10^{-5}$. A short circulation phenomenon was observed from the supply air vents to the exhaust air vents located in the ceiling. A high temperature layer was formed within one meter of the ceiling, and a low temperature layer was formed under this layer due to the low velocity and high temperature of the supply air, and the improper locations of the supply air vents and exhaust air vents. The stagnation was evident at the above adult pool and the mean age of the air was 22 minutes. Disinfection by-products in the indoor swimming pool were present in higher concentrations than in the outdoor air. In order to increase the removal of pollutants, adjustment was required of the supply air volume and the supply/exhaust position.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

An Empirical Study of Soundproof wall with Reduced Wind Load (풍하중 저감형 방음판의 실증 연구)

  • Choi, Jin-Gyu;Lee, Chan-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.272-278
    • /
    • 2018
  • Traffic volume has been greatly increasing due to urban development and the improvement of living standards, and many complaints are being raised due to the increasing road noise. As a countermeasure against these problems, highly soundproof walls are installed on the sides of roads. However, the ability to bear wind loads is a major design requirement for soundproof walls, which contributes to the exponential increases in construction costs and restricts the height of the walls. The aim of this study is to improve the performance of soundproof walls and to dramatically reduce wind loads while maintaining excellent price competitiveness. Based on Helmholz's resonator theory, a new concept is proposed for a ventilation-type soundproofing plate that can pass through a fluid like air and reduce noise. A full-scale metal soundproofing plate was produced to satisfy the quality standards of highways by conducting a sound-pressure transmission-loss test, wind tunnel test, and material quality test. To verify the reliability, the wall was manufactured and installed, and the sound insulation effect was examined by measuring the noise over time. In the future, ventilated soundproof walls on roads could create a pleasant living environment due to the high noise-insulation effect.

Natural Convection in a Water Tank with a Heated Horizontal Plate Facing Downward (아래로 향한 수평가열판이 있는 수조에서의 자연대류)

  • Yang, Sun-Kyu;Chung, Moon-Ki;Helmut Hoffmann
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 1995
  • experimental and computational studies ore carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a oater filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate Horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And How fields are visualized by taking pictures of the How region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole How area as the heater and coolers are put into operation. In the remote region below the heated plate the new is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields.

  • PDF