• 제목/요약/키워드: Volume reconstruction

검색결과 417건 처리시간 0.023초

Analysis of factors that affect drainage volume after expander-based breast reconstruction

  • Lim, Yoon Min;Lew, Dae Hyun;Roh, Tai Suk;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • 제47권1호
    • /
    • pp.33-41
    • /
    • 2020
  • Background Closed-suction drains are widely used in expander-based breast reconstruction. These drains are typically removed using a volume-based criterion. The drainage volume affects the hospital stay length and the recovery time. However, few studies have analyzed the factors that influence drainage volume after expander-based breast reconstruction. Methods We retrospectively analyzed data regarding daily drainage from patients who underwent expander-based breast reconstruction between April 2014 and January 2018 (159 patients, 176 expanders). Patient and operative factors were analyzed regarding their influence on total drainage volume and drain placement duration using univariate and multivariate analyses and analysis of variance. Results The mean total drainage volume was 1,210.77±611.44 mL. Univariate analysis showed correlations between total drainage volume and age (B=19.825, P<0.001), body weight (B=17.758, P<0.001), body mass index (B=51.817, P<0.001), and specimen weight (B=1.590, P<0.001). Diabetes history (P<0.001), expander type (P<0.001), and the surgical instrument used (P<0.001) also strongly influenced total drainage. The acellular dermal matrix type used did not affect total drainage (P=0.626). In the multivariate analysis, age (B=11.907, P=0.004), specimen weight (B=0.927, P<0.001), and expander type (B=593.728, P<0.001) were significant predictors of total drainage. Conclusions Our findings suggest that the total drainage and the duration of drain placement needed after expander-based breast reconstruction can be predicted using preoperative and intraoperative data. Patient age, specimen weight, and expander type are important predictors of drainage volume. Older patients, heavier specimens, and use of the Mentor rather than the Allergan expander corresponded to a greater total drainage volume and a longer duration of drain placement.

혀의 재건을 위한 부피 및 표면적의 측정 (Estimation of Volume and Surface Area for Reconstruction of Tongue)

  • 박하나로;김희진;정우진;안순현
    • 대한두경부종양학회지
    • /
    • 제27권1호
    • /
    • pp.27-31
    • /
    • 2011
  • Purpose : Anterolateral thigh and radial forearm flap is the most important fasciocutaneous flap widely used for reconstruction of tongue. One important purpose of flap is replacing the volume of tongue but still there is no data about the surface area and volume to be reconstructed after glossectomy. In this paper, surface area and volume is estimated from the 3-dimensionally reconstructed MRI images to see which flap is more ideal and to give the reference value for reconstruction. Materials and Methods : With coronal MRI image, tongue including only the intrinsic muscle is delineated in every section and reconstructed 3-dimensionally and calculated the volume and surface area to be reconstructed according to the degree of glossectomy. This volume and surface area was compared with the volume of anterolateral thigh and radial forearm flap. Results : The volume and surface area to be reconstructed in hemiglossectomy was $39.0{\pm}4.0cm^3$ and $31.8{\pm}2.7cm^2$ respectively. The average thickness of anterolateral thigh flap is $9.4{\pm}2.8mm$ and that of radial forearm is $3.8{\pm}1.0mm$. Comparing the curve of tongue surface area and volume with the volume of flap, the anterolateral thigh flap has more ideal volume to replace the defect. Conclusions : The surface area and volume requested for reconstruction could be suggested and the anterolateral thigh flap has more ideal volume for reconstruction of glossectomy defect.

Three Dimensional Target Volume Reconstruction from Multiple Projection Images

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.439-441
    • /
    • 2002
  • The aim of this study is to reconstruct the 3D target volume from multiple projection images. It was assumed that we were already aware of the target position exactly, and all processes were performed in Target Coordinates whose origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. Reconstruction Box was made up of voxels of 3D matrix. Projection images were transformed into 3D volume in this virtual box using geometrical based back-projection method. Algorithm was applied to an ellipsoid model and horse-shoe shaped model. Projection images were created using C program language by geometrical method and reconstruction was also accomplished using C program language and Matlab(The Mathwork Inc., USA). For ellipsoid model, reconstructed volume was slightly overestimated but target shape and position was proved to be correct. For horse-shoe shaped model, reconstructed volume was somewhat different from original target model but there was a considerable improvement in target volume determination.

  • PDF

Bounding volume estimation algorithm for image-based 3D object reconstruction

  • Jang, Tae Young;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Seong Dae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권2호
    • /
    • pp.59-64
    • /
    • 2014
  • This paper presents a method for estimating the bounding volume for image-based 3D object reconstruction. The bounding volume of an object is a three-dimensional space where the object is expected to exist, and the size of the bounding volume strongly affects the resolution of the reconstructed geometry. Therefore, the size of a bounding volume should be as small as possible while it encloses an actual object. To this end, the proposed method uses a set of silhouettes of an object and generates a point cloud using a point filter. A bounding volume is then determined as the minimum sphere that encloses the point cloud. The experimental results show that the proposed method generates a bounding volume that encloses an actual object as small as possible.

임의의 비정렬 격자계에서의 국지적 선형 재구성 기법 (A Locally Linear Reconstruction scheme on arbitrary unstructured meshes)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.31-36
    • /
    • 2003
  • A field reconstruction scheme for a cell centered finite volume method on unstructured meshes is developed. Regardless of mesh quality, this method is exact within a machine accuracy if the solution is linear, which means it has full second order accuracy. It does not have any limitation on cell shape except convexity of the cells and recovers standard discretization stencils at structured orthogonal grids. Accuracy comparisons with other popular reconstruction schemes are performed on a simple example.

  • PDF

Volumetric change of the latissimus dorsi muscle after postoperative chemotherapy and radiotherapy in immediate breast reconstruction with an extended latissimus dorsi musculocutaneous flap: final results from serial studies

  • Song, Kyeong Ho;Oh, Won Seok;Lee, Jae Woo;Kim, Min Wook;Jeong, Dae Kyun;Bae, Seong Hwan;Kim, Hyun Yul;Jung, Youn Joo;Choo, Ki Seok;Nam, Kyung Jin;Joo, Ji Hyeon;Yun, Mi Sook;Nam, Su Bong
    • Archives of Plastic Surgery
    • /
    • 제48권6호
    • /
    • pp.607-613
    • /
    • 2021
  • Background Breast reconstruction using an extended latissimus dorsi (eLD) flap can supplement more volume than reconstruction using various local flaps after partial mastectomy, and it is a valuable surgical method since the reconstruction area is not limited. However, when performing reconstruction, the surgeon should consider latissimus dorsi (LD) volume reduction due to postoperative chemotherapy (POCTx) and postoperative radiotherapy (PORTx). To evaluate the effect of POCTx and PORTx on LD volume reduction, the effects of each therapy-both separately and jointly-need to be demonstrated. The present study quantified LD volume reduction in patients who underwent POCTx and PORTx after receiving breast-conserving surgery (BCS) with an eLD flap. Methods This study included 48 patients who received immediate breast reconstruction using an eLD flap from January 2013 to March 2017, had chest computed tomography (CT) 7-10 days after surgery and 10-14 months after radiotherapy completion, and were observed for more than 3 years postoperatively. One surgeon performed the breast reconstruction procedures, and measurements of breast volume were obtained from axial CT views, using a picture archiving and communication system. A P-value <0.05 was the threshold for statistical significance. Results The average volume reduction of LD at 10-14 months after completing POCTx and PORTx was 64.5% (range, 42.8%-81.4%) in comparison to the volume measured 7-10 days after surgery. This change was statistically significant (P<0.05). Conclusions Based on the findings of this study, when harvesting an eLD flap, surgeons should anticipate an average LD volume reduction of 64.5% if chemotherapy and radiotherapy are scheduled after BCS with an eLD flap.

안와내벽골절의 해부학적 복원술 (Anatomical Reconstruction of the Medial Orbital Wall Fracture)

  • 최우경;강동희;오상아
    • 대한두개안면성형외과학회지
    • /
    • 제13권1호
    • /
    • pp.29-35
    • /
    • 2012
  • Purpose: In surgical treatment of the medial orbital wall fractures, restoring the original position of the orbital wall is difficult in some cases. Under such condition, the orbital wall is often reconstructed with synthetic material, without bony reduction, which is considered to be the conventional reconstruction. The purpose of this study is to compare the outcomes of anatomical reconstruction, which restores the bony wall to the anatomical position, from that of the conventional reduction in the isolated medial orbital wall fractures. Methods: Thirty patients, who underwent reconstruction surgery for the isolated medial orbital wall fractures from March 2007 to August 2011, were reviewed retrospectively. The surgical outcomes of two groups, the conventional reconstruction group (15 patients) and the anatomical reconstruction group (15 patients), were studied in 2 measurements, a one day before and 6 months after the surgery. The changes of orbital volume were calculated by the images from a computed tomography scan and enophthalmos was measured by a Hertel exophthalmometer. Results: The orbital volume ratio was decreased by an average of 1.05% in the conventional reconstruction group, while in the anatomical reconstruction group, the ratio decreased by 5.90% (p<0.05). The changes in the Hertel scale were 0.20 mm in the conventional reconstruction group, and 0.70 mm in the anatomical reconstruction group. However, the difference in the Hertel scale was statistically insignificant (p>0.05). Conclusion: In conclusion, the anatomical reconstruction technique of the isolated medial orbital wall fracture results in a better outcome than that of the conventional reconstruction, in terms of restoring of the original orbital volume and anatomic position. Thus, it can be considered as a useful method for the isolated medial orbital wall fractures.

유방조직의 밀도와 체질량지수와의 상관관계 (Correlation of Breast Tissue Density and Body Mass Index)

  • 양정학;이택종
    • Archives of Plastic Surgery
    • /
    • 제37권6호
    • /
    • pp.732-735
    • /
    • 2010
  • Purpose: In performing breast reconstruction, making symmetrical breast is still a challenge. A precise estimate of the volume of the breast specimen is necessary to reconstruct a symmetrical and aesthetically pleasing breast. This study aims at finding out the relationship with breast tissue density and body mass index designed to apply for breast reconstruction. Methods: By using the Archimedes' principle, the authors calculated the volume of the breast specimen and drew a correlation between the density of breast specimen and BMI. From October 2002 to November 2004, this method was used on 197 patients to predict breast volume for TRAM flap reconstruction. Results: The mean density was 0.9954g/cc and had no correlation with BMI (p-value=0.069). There was no difference between denstiy of breast tissue after skin spared mastectomy and that of breast tissue after nipple spared mastectomy. Conclusion: These data will be helpful to predict the needed volume for breast reconstruction.

Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer

  • Lee, Soo Yong;Lim, Sangwook;Ma, Sun Young;Yu, Jesang
    • Radiation Oncology Journal
    • /
    • 제35권3호
    • /
    • pp.274-280
    • /
    • 2017
  • Purpose: To see the gross tumor volume (GTV) dependency according to the phase selection and reconstruction methods, we measured and analyzed the changes of tumor volume and motion at each phase in 20 cases with lung cancer patients who underwent image-guided radiotherapy. Materials and Methods: We retrospectively analyzed four-dimensional computed tomography (4D-CT) images in 20 cases of 19 patients who underwent image-guided radiotherapy. The 4D-CT images were reconstructed by the maximum intensity projection (MIP) and the minimum intensity projection (Min-IP) method after sorting phase as 40%-60%, 30%-70%, and 0%-90%. We analyzed the relationship between the range of motion and the change of GTV according to the reconstruction method. Results: The motion ranges of GTVs are statistically significant only for the tumor motion in craniocaudal direction. The discrepancies of GTV volume and motion between MIP and Min-IP increased rapidly as the wider ranges of duty cycles are selected. Conclusion: As narrow as possible duty cycle such as 40%-60% and MIP reconstruction was suitable for lung cancer if the respiration was stable. Selecting the reconstruction methods and duty cycle is important for small size and for large motion range tumors.

USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원 (Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART)

  • 노영준;조형석;김형철;김종형
    • 제어로봇시스템학회논문지
    • /
    • 제8권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.