• Title/Summary/Keyword: Volume quantification

Search Result 142, Processing Time 0.027 seconds

Determination of saikosaponin derivatives in Bupleuri Radix using HPLC-ELSD (HPLC-ELSD를 이용한 시호 중의 saikosaponin 유도체의 확인법 개발)

  • Kim, Bo-Mi;Yoon, Kee-Dong;Han, Kyung-Reem;Kim, Jin-Woong
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.57-61
    • /
    • 2008
  • A HPLC-ELSD method was developed to determine saikosaponin derivatives from Bupleuri Radix. Eight saikosaponins, saikosaponin c, i, h, a, $b_2$, g, $b_1$ and d, were analyzed under optimized HPLC conditions [column: Eclipse XDB $C_{18}$ ($150{\times}4.6mm$ i.d., $5{\mu}m$; mobile phase: $H_2O$ with 0.1% $CH_3$COOH (v/v) for solvent A and AcCN with 0.1% $CH_3$COOH (v/v) for solvent B, gradient elution; flow rate: 1mL/min; injection volume: $20{\mu}L$]. Good linearity was achieved in the range from 62.5 to $250{\mu}g/mL$ for each compound, and intra-day precision and accuracy at each concentration level varied between 0.05 and 5.45% and between 93.9 and 109.6%, respectively, whereas those for inter-day variations were between 0.91 to 2.73% and 94.3 to 106.1%. This HPLC-ELSD method was applied for the determination of sakosaponins from Bupleuri Radix samples, and saikosaponin a $(0.79{\pm}0.20mg/g)$, c $(0.33{\pm}0.06mg/g)$ and d $(0.48{\pm}0.15mg/g)$ were observed as major compounds. The other saikosaponins were shown under limit of quantification level thus couldn't be quantified. The present study suggested that the introduced HPLC-ELSD method is selective and reliable, and not only saikosaponin a, but also saikosaponin c and d should be employed as the standard markers for Bupleuri Radix.

Source Identification and Quantification of Coarse and Fine Particles by TTFA and PMF

  • Hwang, In-Jo;Bong, Choon-Keun;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.203-213
    • /
    • 2002
  • Receptor modeling is one of statistical methods to achieve reasonable air pollution strategies. In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The main purpose of the study was to survey seasonal trends of inorganic elements in the coarse and fine particles. Second, this study has attempted emission sources qualitatively by a receptor method, the PMF mo-del. After that. both PMF (positive matrix factorization) model and TTFA (target transformation factor analysis) model were applied to compare and to estimate mass contribution of coarse and fine particle sources at the receptor. A total of 138 sets of samples was collected from 1989 to 1996 by a low volume cascade impactor with 9 size fraction stages at Kyung Hee University in Korea. Sixteen chemical species (Si, Ca, Fe, K, Pb, Na, Zn, Mg, Ba, Ni, V, Mn, Cr, Br, Cu. Co) were characterized by XRF. The study result showed that the weighted arithmetic mean of coarse and fine particles were 51.3 and 54.4 $\mu\textrm{g}$/㎥, respectively. Contribution of both particle fractions were esti-mated using TTFA and PMF models. The number of estimated sources was seven according to TTFA model and 8 according to PMF model. Comparison of TTFA and PMF revealed that both methodologies exhibited similar trends in their contribution pattern. However, large differences between contributions were observed in some sour-ces. The results of this study may help to suggest control strategies in local countries where known source profiles do not exist.

Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석)

  • Seo, Chang-Seob;Ha, Hyekyung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

Quantitative Determination of the Thirteen Marker Components in Banhasasim-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry (LC-MS/MS를 이용한 반하사심탕 물 추출물 중 13종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • Banhasasim-tang is a well-known traditional Korean herbal formula and has been used clinically for the treatment of gastric disease, including acute and chronic gastritis, diarrhea and gastric ulcers in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer method was developed for the quantitative determination of the 13 marker constituents, homogentisic acid (1), 3,4-dihydroxybenzaldehyde (2), spinosin (3), liquiritin (4), baicalin (5), ginsenoside Rg1 (6), liquiritigenin (7), wogonoside (8), ginsenoside Rb1 (9), baicalein (10), glycyrrhizin (11), wogonin (12), and 6-gingerol (13) in Banhasasim-tang decoction. Separation of the compounds 1-13 was using an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) formic acid in water (A) and acetonitrile (B) by gradient elution. The injection volume and flow rate were $2.0{\mu}L$ and 0.3 mL/min, respectively. Calibration curves of the compounds 1-13 were showed with $r^2$ values ${\geq}0.9908$. The limit of detection and limit of quantification values of the compounds 1-13 were 0.04-1.11 ng/mL and 0.13-3.33 ng/mL, respectively. Among the these compounds, the compounds 1-3 were not detected, while the compounds 4-13 were detected in the ranges of $3.20-107,062.98{\mu}g/g$ in Banhasasim-tang sample.

Optimization of Analytical Procedure for Hydrogen Cyanide in Mainstream Smoke

  • Lee, John-Tae;Kim, Hyo-Keun;Hwang, Keon-Joong;Jang, Gi-Chul;Lee, Jeong-Min;Kim, Ick-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.125-131
    • /
    • 2007
  • Hydrogen cyanide(HCN), formed from pyrolysis of various nitrogenous compounds such as protein, amino acids and nitrate in tobacco, is present in both the particulate phase and vapor phase of cigarette smoke. Typically the determination of HCN in cigarette smoke has been done through colorimetric and electrochemical techniques, such as fluorescence spectrometry, UV-spectrophotometry (UV), continuous flow analyzer (CFA), capillary GC-ECD and ion chromatography (IC). Most of these techniques are known to be time-consuming and some of them lack specificity or sensitivity. The available results from both our laboratory and reported literatures for 2R4F Kentucky reference cigarette, smoked under ISO condition, show a relatively wide variation ranging from 100 to 120 ug/cig of HCN. Especially, the precision and accuracy of the analytical results of HCN tend to get worse in low tar cigarettes and under intense smoking condition. In this paper, a more optimized analytical methods than previous ones are suggested. This method shows lower detection limit and has improved precision and accuracy, so it is applicable for wide tar level cigarettes under intense smoking condition as well as under ISO smoking condition. Important features of this method are improved sample collection and quantification systems such as the number of trapping units, volume, temperature and type of trapping solution. To avoid volatilization loss of HCN in analyzing mainstream smoke, it is highly recommended that pH values of trapping solutions should be maintained over 11 and cold traps should be used in collecting mainstream smoke.

Monitoring of 7 mycotoxins in pork (돼지고기에서 7종 mycotoxins 잔류실태 조사)

  • Kim, Yoen-Joo;Kim, Mi-Ran;Choi, Tae-Suk;Kim, Young-Seob;Lee, Ju-Hyoung
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.303-309
    • /
    • 2013
  • This study was conducted to determine the content of 7 mycotoxins (aflatoxin $B_1$, $B_2$, $G_1$, $G_2$, $M_1$, ochratoxin A and zearalenone) using LC-MS/MS in pork available on the Korean markets. The analysis was carried out using following conditions; C18 column ($2.1{\times}100mm$, $1.7{\mu}m$), mobile phase composed of $H_2O$ (0.1 mM $NH_4Ac$ 0.01% HCOOH) : Methanol (0.1 mM $NH_4Ac$ 0.01% HCOOH), binary pump at a flow rate of 0.5 mL/min and $2{\mu}L$ of injection volume, MS/MS detector with ESI positive and negative mode. The quantication of mycotoxins was based on matrix-matched calibration curves with a correlation coefficient in excess of 0.99 for the 7 mycotoxins. The dectection limits were ranged 0.74~2.13 ng/g, with mean recoveries between 73.10~97.46% except aflatoxin $B_1$ (61.31%). We also monitored mycotoxin residues in 208 pork samples. The test results, mycotoxins were not found except one sample. Ochratoxin A in one sample of the test samples was detected below the quantification limit.

Development of Total Cholesterol Detection System by Fluorescence Chromatography (형광 크로마토그래피에 의한 콜레스테롤 측정법의 개발)

  • Oh, Sang-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.2
    • /
    • pp.148-153
    • /
    • 2009
  • In this study, we have developed a fluorescence chromatographic assay for the quantification of total cholesterol in serum, which is a well-known risk predictor for cardiovascular diseases. The new assay system consists of a chromatographic strip in a cartridge, enzyme buffer containing cholesterol esterase, cholesterol oxidase, horseradish peroxidase, and color developer AEC, and a laser fluorescence scanner. The correlation coefficient (r) between cholesterol concentration and relative fluorescence units was 0.968 in the new assay, showing a reliable linearity through the tested range of cholesterol. Recovery test and comparability with a Hitachi 747 instrument showed 106.5-94% and r = 0.939 (p<0.001), respectively. The new assay system for cholesterol was developed as a pre-POCT platform conducted in clinics since it is fast (8 min) and uses a small volume of sample ($5\;{\mu}l$), and it may be applied for on-site diagnostics to replace expensive automated biochemical analyzer.

Qualitative Analysis of the Major Constituents in Traditional Oriental Prescription Bang-poong-tong-sung-san by Liquid Chromatography/Ultraviolet Detector/Ion-Trap Time-of-Flight Mass Spectrometry

  • Eom, Han Young;Kim, Hyung-Seung;Han, Sang Beom
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • An advanced and reliable high performance liquid chromatography (HPLC)/ultraviolet detector (UV)/ion-trap time-of-flight (IT-TOF) mass spectrometry was developed for the simultaneous quantification of 19 marker compounds in Bang-poong-tong-sung-san (BPTS), a traditional oriental prescription. Various parameters affecting HPLC separation and IT-TOF detection were investigated, and optimized conditions were identified. The separation was achieved on a Capcell PAK C18 column ($1.5mm{\times}250mm$, $5{\mu}m$ particle size) using a gradient elution of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.1 mL/min. The column temperature was maintained at $40^{\circ}C$ and the injection volume was $2{\mu}L$. IT-TOF system was equipped with an electrospray ion source (ESI) operating in positive or negative ion mode. The optimized electrospray ionization parameters were as follows: ion spray voltage, +4.5 kV (positive ion mode), or -3.5 kV (negative ion mode); drying gas ($N_2$), 1.5 L/min; heat block temperature, $200^{\circ}C$. Automatic $MS^n$ (n = 1~3) analyses were carried out to obtain structural information of analytes. Elemental compositions and their mass errors were calculated based on their accurate masses obtained from a formula predictor software. The marker compounds in BPTS were identified by comparisons between $MS^n$ spectra from standards and those from extracts. Moreover, the libraries of $MS^2$ and $MS^3$ spectra and accurate masses of parent and fragment ions for marker compounds were constructed. The developed method was successfully applied to the BPTS extracts and identified 17 out of 19 marker compounds in the BPTS extracts.

Quantitative Analysis of the Eleven Marker Components in Traditional Korean Formula, Jakyakgamcho-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry (UPLC-MS/MS를 이용한 작약감초탕 물 추출물 중 11종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.64-72
    • /
    • 2016
  • Jakyakgamcho-tang is a well-known traditional herbal medicine and has been used for the treatment of mainly pains in oriental medicine. In this study, analytical method for the quantitative determination of the eleven marker components, gallic acid (1), oxypaeoniflorin (2), paeoniflorin (3), albiflorin (4), liquiritin (5), isoliquiritin (6), ononin (7), liquiritigenin (8), benzoylpaeoniflorin (9), paeonol (10), and glycyrrhizin (11) in Jakyakgamcho-tang decoction was performed using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The analytical column for separation of the compounds 1~11 was used an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) aqueous formic acid (A) and acetonitrile (B) by gradient elution. The flow rate was 0.3 ml/min and injection volume was $2.0{\mu}l$. Correlation coefficient in the calibration curves of the compounds 1~11 were showed a good linearity with more than 0.99. The limit of detection and limit of quantification values of the compounds 1~13 were detected in the ranges 0.06~18.43 ng/ml and 0.18~58.29 ng/ml, respectively. Among the compounds 1~11, the compounds 10 were not detected in this sample, while the ten compounds, 1~9 and 11, were detected $44.05{\sim}19,289.05{\mu}g/g$ in Jakyakgamcho-tang extract.

Analytical Method for Triazine Herbicide Cyanazine Residues in Major Medicinal Crops (주요 약용작물에 대한 Cyanazine 제초제의 잔류 분석법)

  • Hwang, Young Sun;Lim, Jung Dae;Choung, Myoung Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.237-245
    • /
    • 2016
  • Background: Cyanazine is used as a pre-emergent herbicide once during the growing season to control weeds of many upland crops worldwide. This study aimed to establish a method to determined cyanazine residue levels in major medicinal crops by using high performance liquid chromatography-UV detection/mass spectometry (HPLC-UVD/MS). Methods and Results: Cyanazine residue was extracted with acetone from the raw products of four representative medicinal plants - Scutellaria baicalensis, Paeonia lactiflora, Platycodon grandiflorum and Angelica gigas. The extract was diluted with a large volume of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. It was then purifined using optimized Florisil column chromatography. HPLC analysis conducted using an octadecylsilyl column allowed the successful separation of cyanazine from co-extractives of the samples, and the amount was sensitively quantified by ultraviolet absorption at 225 nm with no interference. The accuracy and precision of the proposed method were validated by conducting recovery experiments on each medicinal crop sample fortified with cyanazine at two concentration levels per crop in triplicate. Conclusions: The mean recoveries ranged from 91.2% to 105.3% for the four representative medicinal crops. The coefficients of variation were less than 10%, irrespective of the sample types and fortification levels. The limit of quantification of cyanazine was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method was performed by liquid chromatography/MS using selected-ion monitoring technique to clearly identify the suspected residue.