• Title/Summary/Keyword: Volume of distribution

Search Result 2,612, Processing Time 0.029 seconds

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Design criteria of wind barriers for traffic -Part 2: decision making process

  • Kim, Dong Hyawn;Kwon, Soon-Duck;Lee, Il Keun;Jo, Byung Wan
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • This study presents a decision making process for installation of wind barrier which is used to reduce the wind speed applied to running vehicles on expressway. To determine whether it is needed to install wind barrier or not, cost and benefit from wind barrier are calculated during lifetime. In obtaining car accidental risk, probabilistic distribution of wind speed, daily traffic volume, mixture ratio in the volume, and duration time for wind speed range are considered. It is recommended to install wind barrier if benefit from the barrier installation exceed construction cost. In the numerical examples, case studies were shown for risk and benefit calculation and main risky regions on Korean highway were all evaluated to identify the number of installation sites.

Wave propagation in functionally graded beams using various higher-order shear deformation beams theories

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • In this work, various higher-order shear deformation beam theories for wave propagation in functionally graded beams are developed. The material properties of FG beam are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, the governing equations of the wave propagation in the FG beam are derived by using the Hamilton's principle. The analytic dispersion relations of the FG beam are obtained by solving an eigenvalue problem. The effects of the volume fraction distributions on wave propagation of functionally graded beam are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer (대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석)

  • Son, Young-Seok;Shin, Jee-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

A Study on the Strength Properties of Glass Fiber Reinforced Cement made by Premixing Method (선배합방법에 의한 섬유보강 시멘트의 강도 특성에 관한 연구)

  • 김용부;조정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.5-10
    • /
    • 1990
  • There are two main methods in reinforcing cements with glass fibers : spray-suction and premixing method. But GRC have been mostly studied by spray technique. In order to develop GRC made by premixing method, in this paper, the influence of glass fiber length, volume content and curing conditions upon the compressive, direct tensile and bending strengths of composites fabricated by a premixing method, were investigated. According to the test results, although it was difficult to obtain perfectly uniform distribution of fibers in GRC Pannel, it was found that tensile strength of cements with glass fiber was improved 2~5 times and flexural strength 4 times compared to conventional cement mortar upto fiber length 35 mm, volume content 4%.

  • PDF

Rotordynamic and Leakage Analysis for Stepped-Labyrinth Gas Seal (압축기용 계단식 래버린스 실의 누설 및 동특성해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1084-1089
    • /
    • 2000
  • The basic equations are derived for the analysis of a stepped labyrinth gas seal which are generally used in high performance compressors, gas turbines, and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The leakage and rotordynamic characteristic results of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula.

  • PDF

Computer Simulation on the Correlations between the Microwave Quality factor and the Pores inside the Dielectrics (마이크로파 유전체의 내부 기공과 마이크로파 품질계수의 상관관계에 대한 컴퓨터 시뮬레이션)

  • 박재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.311-316
    • /
    • 2003
  • Effects of pores on the microwave properties in microwave dielectric ceramics were studied by a computer simulation. Scattering matrix S$\_$21/ obtained from the network analyzer was compared to the S$\_$21/ obtained from the simulation. From electric field distribution, the dominant resonant TE$\_$01$\delta$/ mode could be easily determined. The effects of the porosity and pore size inside the dielectrics on the microwave properties were investigated by the HFSS simulation. When the total pore volume remains constantly, the quality factor decreased as the pore size Increases. As the total pore volume of the dielectrics increased. quality factor decreased.

A Study on Fine Dust Prediction Based on Internal Factors Using Machine Learning (머신러닝을 활용한 내부 발생 요인 기반의 미세먼지 예측에 관한 연구)

  • Yong-Joon KIM;Min-Soo KANG
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.2
    • /
    • pp.15-20
    • /
    • 2023
  • This study aims to enhance the accuracy of fine dust predictions by analyzing various factors within the local environment, in addition to atmospheric conditions. In the atmospheric environment, meteorological and air pollution data were utilized, and additional factors contributing to fine dust generation within the region, such as traffic volume and electricity transaction data, were sequentially incorporated for analysis. XGBoost, Random Forest, and ANN (Artificial Neural Network) were employed for the analysis. As variables were added, all algorithms demonstrated improved performance. Particularly noteworthy was the Artificial Neural Network, which, when using atmospheric conditions as a variable, resulted in an MAE of 6.25. Upon the addition of traffic volume, the MAE decreased to 5.49, and further inclusion of power transaction data led to a notable improvement, resulting in an MAE of 4.61. This research provides valuable insights for proactive measures against air pollution by predicting future fine dust levels.

A PSpice Modeling of PFC Circuit Using Soft-Switched Boost Converter

  • Mok, H.S.;Choe, G.H.;Jeong, S.E.;Choi, J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.393-399
    • /
    • 1997
  • Single-phase and three-phase AC to DC power converters are becoming frequently used for high voltage/high power applications such as telecommunications. They often require input/output transformer isolation for safety, a unity input power factor for minimum reactive power, free input harmonic currents fed back to the AC Power distribution system and, finally, high efficiency and high power density for minimum weight and volume. The proposed boost converter for power factor correction (PFC) provides an unity input power factor, low harmonic distortion and high efficiency along with reduced volume and weight. Single-phase 220VAC input/380VDC 1KW output prototype is constructed and experimental results will be verified with those of PSpice simulation.

  • PDF