• 제목/요약/키워드: Volume of distribution

검색결과 2,612건 처리시간 0.03초

콘크리트 탄성계수의 미시역학적 추정 (Evaluation of Elastic Modulus of Concrete Using Micro-mechanics Models)

  • 유동우;조호진;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.345-349
    • /
    • 1995
  • Although heterogeneous materials consisted of micro-constituents are complicated, it is possible to evaulate effective elastic moduli by using micro-mechanics models. In order to evaluate effective elastic moduli of concrete, all aggregates in a representative volume element(RVE) are assumed spherical and randomly distributed. A dilute distribution of inclusions is considered first, and the corresponding overall elastic moduli of the RVE are estimated. Then, the self-consistent method is used in order to take into account the interaction effects. The elastic moduli of concrete are calculated using the models and compared with those of experiment for different volume fractions of the aggregates and elastic moduli of the mortar and the aggregates.

  • PDF

Evaluation of Platelet Indices in Lung Cancer Patients

  • Oncel, Mufide;Kiyici, Aysel;Oncel, Murat;Sunam, Guven Sadi;Sahin, Emel;Adam, Bahattin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7599-7602
    • /
    • 2015
  • Background: In this study, we aimed to determine platelet indices such as platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), Plateletcrit (PCT) platelet count (PLT) in lung cancer cases, and evaluate any relationships between these parameters and stage or histologic types. Materials and Methods: This retrospective study covered 44 lung cancer patients and 47 healthy subjects. Platelet indices including PLT, PCT, MPV, PDW were estimated and compared with normal subjects. The results were evaluated statistically. Results: The PDW value was significantly higher in the cancer group compared to the control group; however, the values for PCT and MPV were lower. Conclusions: We suggest potential use of platelet indices in diagnosis of lung cancer.

활성탄의 세공이 자연유기물질의 흡착에 미치는 영향 (Effect of pore characteristics of activated carbon on adsorption of natural organic matter)

  • 박정순;홍성호
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.249-255
    • /
    • 2011
  • It is complicate problem to optimize removing natural organic matter (NOM) by activated carbon in drinking water treatment because the activated carbon has heterogeneous surface area and pore structure. Seven different coals based activated carbons which have different pore structures were used in the study. Sand filtered effluents which normally used as GAC adsorber influent were used. The molecular weight distribution showed that most of the NOM was bigger than 10,000Da. In this study, systematical approaches such as characteristics of surface area and pore volume were evaluated on NOM adsorption. Especially, the adsorption capacities for NOM were evaluated by effect of micro-pores and meso-pores in surface area and pore structure. The results show that the higher ratio of meso-pore compare to the micro-pore has not only the better adsorption capacities for NOM but also the higher strongly-adsorbable fraction. Therefore, the overall adsorption capacity is increased with higher meso-pore ratio with existing of reasonable micro-pore surface area and volume.

동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석 (Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel)

  • 방원규;정재영;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.

마이크로채널에서 과냉 핵비등 시발점의 비정상 수치해석 (TRANSIENT SIMULATION OF SUBCOOLED ONSET OF NUCLEATE BOILING IN A MICRO-CHANNEL)

  • 이희준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.88-93
    • /
    • 2011
  • A numerical study of subcooled onset of nucleate boiling (ONB) in a micro-channel under pulsed heating using volume of fluids (VOF) model was conducted. The VOF simulation adopting the existing experimental condition is compared to the experimental data. The time to ONB was determined when the void fraction at the microheater surface first appeared. The theoretical superheat for homogeneous nucleation relatively predicts the transient ONB results of convective flow of water well based on local temperature distribution. It was found that once heat load increases at the heater, transient flow boiling starts to occur faster.

Analysis of Fluid-thermal Coupling in Ferrofluid Bearing Used in High Speed Machines

  • Yin, Xin;Ma, Jien;Fang, Youtong;Jin, Shuai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.421-428
    • /
    • 2013
  • This paper describes analysis of journal bearings lubricated with ferrofluid, which are very suitable for high speed machines. Comparing to conventional lubricants, the coupling of hydrodynamic, thermal and magnetic properties of ferrofluid adds to the complexity in analysis. Modified Reynolds equation and energy equation are derived and solved numerically using finite volume method. Pressure distribution is got which takes temperature effect into consideration. Static characteristics are then discussed. One optimal scheme is also got according to analysis results.

피지옴 모델을 이용한 심실의 전기활성시간 분포에 따른 심박출 성능평가 (Estimation of Cardiac Pumping Performance according to the Ventricular Electrical Activation Time Distribution by Using Physiome Model)

  • 김형균;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.198-203
    • /
    • 2015
  • The purpose of the study is to examine the effects of pacemaker location on cardiac pumping efficacy theoretically. We used a three-dimensional finite element cardiac electromechanical model of canine ventricles with models of the circulatory system. Electrical activation time for normal sinus rhythm and artificial pacing in apex, left ventricular free wall, and right ventricular free wall were obtained from electrophysiological model. We applied the electrical activation time maps to the mechanical contraction model and obtained cardiac mechanical responses such as myocardial contractile ATP consumption, stroke work, stroke volume, ejection fraction, and etc. Among three artificial pacing methods, left ventricle pacing showed best performance in ventricular pumping efficacy.

아산지역 도로변의 $NO_2$ 및 TSP 농도에 관한 연구 (A study on $NO_2$ and TSP levels of the Major Trunk Road in Asan-area)

  • 손부순;김현탁;차정훈
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.68-74
    • /
    • 1999
  • The atmospheric concentrations of Nitrogen Dioxide ($NO_2$) and Total Suspended Particulates (TSP) at the traffic road side were measured n Asan area, Choongchumg-namdo during May 1998 and January, 1999.The results of the study are as follows;1. The aversge value of airbone $NO_2$ and TSP levels were 28.5ppb and 5.9mg/me in Asan area. 2. The concentration distribution of NO2 and TSP is high for the season of winter. On a daily pattern, somewhat high value is appeared in the afternoon. 3. For the station, terminal, and Shinchang, the average value of $NO_2$ is 33.6ppb, 27.9ppb and 24.1ppb in sequence, and the ones of TSP is 6.3mg/m3, 6.0mg/m3 and 5.3mg/m3 in order.4. The high levels of $NO_2$ and TSP were positively related to traffic volume.

  • PDF

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.