• Title/Summary/Keyword: Volume model

Search Result 4,945, Processing Time 0.029 seconds

A Study on the Relation Exchange Rate Volatility to Trading Volume of Container in Korea (환율변동성과 컨테이너물동량과의 관계)

  • Choi, Bong-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • The purpose of this study is to examine the effect of exchange rate volatility on Trading Volume of Container of Korea, and to induce policy implication in the contex of GARCH and regression model. In order to test whether time series data is stationary and the model is fitness or not, we put in operation unit root test, cointegration test. And we apply impulse response functions and variance decomposition to the structural model to estimate dynamic short run behavior of variables. The major empirical results of the study show that the increase in exchange rate volatility exerts a significant negative effect on Trading Volume of Container in long run. The results Granger causality based on an error correction model indicate that uni-directional causality between trading volume of container and exchange rate volatility is detected. This study applies impulse response function and variance decompositions to get additional information regarding the Trading Volume of Container to shocks in exchange rate volatility. The results indicate that the impact of exchange rate volatility on Trading Volume of Container is negative and converges on a stable negative equilibrium in short-run. Th exchange rate volatility have a large impact on variance of Trading Volume of Container, the effect of exchange rate volatility is small in very short run but become larger with time. We can infer policy suggestion as follows; we must make a stable policy of exchange rate to get more Trading Volume of Container

  • PDF

Evaluation of Analysis Methodologies for Freeway Ramp Areas (고속도로 연결로 분석기법에 대한 평가)

  • 이정수;윤치환;김은연
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.1
    • /
    • pp.5-20
    • /
    • 1992
  • Even though the types of ramp facilities in Korea are not various like other countries operations in these sections are very important because ramp merging and /or diverging flow affects freeway overall sections. In this study existing methodologies especially the gap acceptance model and the regression model in USHCM are evaluated with our field data. By gap acceptance model the merging capacity is founded 2.360 pcph which is increased by 7% than the capacity of freeway basic section. And in comparison of actual lane 1 volume to the estimation volume by HCM model the model slightly overestimates the actual volue.

  • PDF

The Impact of Bilateral Free Trade Agreements on International Trade Volume of Bulk Shipment at the Port of Busan in Korea : Focusing on Korea's FTA with Chile, Peru, Singapore, India, and United States (대한민국 FTA체결에 따른 부산항 벌크물동량 영향분석 : 칠레, 페루, 싱가포르, 인도, 미국을 중심으로)

  • Lee, Kyong Han;Park, Ju Dong
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.83-94
    • /
    • 2016
  • The primary purpose of this study is to analyze the impact of bilateral Free Trade Agreements on international trade volume of bulk shipment at the port of Busan in Korea using the Gravity Model. Most recently, the total of 15 Korea's FTAs have been enforced since Korea-Chile FTA in 2004 and more than 50 countries became member of Korea's FTAs. Therefore, aggregated trade volume of Korea's FTA members out of the total trade volume in Korea increased from 25% in 2011 to 67% in 2015. Five Korea's bilateral FTA members are concerned as experimental group while top 10 foreign countries base on trade volume of bulk shipment are applied to the model as control group and panel data was used in this study. According to the results, bilateral FTA, GDP and population have positive impacts on trade volume of bulk shipment at the port of Busan. On the other hand, distance between Korea and its trade partner has negative impact. In examining Hausman test and LR test, the random effect model is statistically more appropriate than the fixed effect model for this study.

The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building (3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구)

  • Choi, Sung-Pil;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

Generation and Validation of Finite Element Models of Computed Tomography for Unidirectional Composites Using Supervised Learning-based Segmentation Techniques (지도학습 기반 분할기법을 이용한 단층 촬영된 단방향 복합재료의 유한요소모델 생성 및 검증)

  • Taeyi Kim;Seong-Won Jin;Yeong-Bae Kim;Jae Hyuk Lim;YunHo Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.395-401
    • /
    • 2023
  • In this study, finite element modeling of unidirectional composite materials of the computed tomography (CT) was conducted using a supervised learning-based segmentation technique. Firstly, Micro-CT scan was performed to obtain the raw volume of unidirectional composite materials, providing microstructure information. From the CT volume images, actual microstructure of the cross-section of unidirectional composite materials was extracted by the labeling process. Then, a U-net deep learning model was trained with a small number of raw images as inputs and their labeled images as outputs to generate a segmentation model. Subsequently, most of remaining images were input to the trained U-net deep learning model to segment all raw volume for identifying complex microstructure, which was used for the generation of finite element model. Finally, the fiber volume fraction of the finite element model was compared with that of experimentally measured volume to validate the appropriateness of the proposed method.

Analysis of Variables Influencing the Pressure Build-up and Volume Expansion of Kimchi Package (김치포장의 압력 및 부피 변화에 영향을 미치는 인자의 분석)

  • 이동선;최홍식;박완수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.429-437
    • /
    • 1999
  • A mathematical model was established for estimating changes in pressure and volume of permeable kimchi packages. The model comprises the CO2 gas production from kimchi and permeation of O2, CO2 and N2 through the permeable film or sheet. Using the developed model, the effects of various packaging variables on the pressure and volume changes were analyzed for rigid and flexible packag es of kimchi(3% salt content) at 15oC, and then effect of storage temperature was also looked into. In case of rigid pack of 400g, using the plastic sheet of high CO2 permeability and initial vacuumizing can help to relieve the problem of pressure build up. The lower fill weight can further reduce the pressure, but will result in higher packaging cost. For the flexible package of 3 kg, highly permeable films such as low density polyethylene(LDPE) and polypropylene can reduce the volume expansion. Higher ratio of CO2 permeability to O2 and N2 permeabilities are effective in reducing the volume expansion. Increased surface area cannot contribute to reduction of volume expansion for highly permeable flexible packages of kimchi. For the impermeable packages, pressure and volume at over ripening stage (acidity 1.0%) increase with decreased temperature, while those at optimum ripening stage(acidity 0.6%) change little with temperature. Pressure of permeable rigid LDPE package increases with tem perature at any ripening stage, and temperature affects the volume of flexible LDPE package very slightly. Experimental verification of the present results and package design with economical consid eration are needed as a next step for practical application.

  • PDF

The Characteristics and Experimental Application of AGNPS Model for Pollution Predicting in Small Watershed (소유역 오염예측모형 AGNPS 의 특성과 실험적 적용)

  • Choi, Jin-Kyu;Lee, Myung-Woo;Son, Jae-Gwon
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 1994
  • AGNPS model is an event-based model to analyze nonpoint-source and to examine potential water quality problems from agricultural watershed. This model uses a square grid-cell system to represent the spatial variability of watershed conditions, and simulates runoff, sediment, and nutrient transport for each cell. AGNPS model was applied on Yeonwha watershed, and the test results were compared with the measured data for runoff volume, peak runoff rate, suspended solids, and phosphorus concentration. The watershed of 278.8 ha was divided into 278 cells, each of which was 1 ha in size. The coefficients of determination for runoff volume and peak flow were (0.893 and 0.801 respectively from regression of the estimated values on the measured values. The concentration of suspendid solid was increased but decreased that of phosphate with runoff volume.

  • PDF

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

Highway traffic noise modeling and estimation based on vehicles volume and speed

  • Rassafi, Amir Abbas;Ghassempour, Jafar
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.211-218
    • /
    • 2015
  • Traffic noise estimation models are useful in evaluation of the noise pollution in current circumstances. They are helpful tools for design and planning new roads and highways. Measurement of average traffic noise level is possible when traffic speed and volume are known. The objective of this study was to devise a model for prediction of highway traffic noise levels based on current traffic variables in Iran. The design of this model was to take the impact of traffic congestion into consideration and to be field tested. This study is a library research augmented by field study conducted on Saeedi Highway located south west of Tehran. The period for the field study lasted 5 days from 7-12 February, 2013. This study examined liner and non-liner methods in formulation of its model. Liner method without a fixed coefficient was the best fit for the intended model. The proposed model can serve as a decision making tool to estimate the impact of key influential factors on sound pressure levels in urban areas in Iran.

Blood Pressure Simulation using an Arterial Pressure-volume Model

  • Yoon, Sang-Hwa;Kim, Jae-Hyung;Ye, Soo-Young;Kim, Cheol-Han;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Using an arterial pressure-volume (APV) model, we performed an analysis of the conventional blood pressure estimation method using an oscillometric sphygmomanometer with computer simulation. Traditionally, the maximum amplitude algorithm (MAA) has been applied to the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected by the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPF) circuitry. Experimental errors result from these effects when estimating blood pressure. To determine an algorithm independent of the influence of waveform shapes and parameters of HPF, the volume oscillation of the APV model and the phase shift of the oscillation with fast Fourier transform (FFT) were tested while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg/s). The phase shift between ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were obtained from simulations performed on two different arterial blood pressure waveforms and one hyperthermia waveform.