• Title/Summary/Keyword: Volume decrease potential

Search Result 76, Processing Time 0.026 seconds

Quality Characteristics of Sponge Cake with Added Baked Black Soybean Powder (구운 검은콩 분말을 첨가한 스펀지 케이크의 품질 특성)

  • Jung, Hyun-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.3
    • /
    • pp.401-407
    • /
    • 2012
  • Baked black soybean has great nutritional value, so it is a great potential ingredient in cake. To find an acceptable ingredient ratio, baked black soybean powder was to wheat flour in different experimental groups. The control was pure wheat flour, and the experimental groups had 0 (control), 10%, 20%, 30%, and 40% baked black soybean powder added. The baked black soybean powder consists of moisture (4.88%), crude protein (34.46%), crude fat (11.35%), crude ash (4.84%), and carbohydrates (44.47%). The specific gravity, spreadability, and baking loss increased with an increase in the amount of baked black soybean powder, but specific volume decreased. The 'L' and 'b' chromaticity values of a sponge cake decrease with increased amounts of added baked black soybean powder. The texture becomes more hard and stuff with added baked black soybean powder, but springiness decreases. A sensory test found the best experimental group to be that of 20% powder added.

Struvite Crystallization of Swine Wastewater using Bittern (간수를 이용한 축산폐수의 struvite 결정화)

  • Ryu, Hong-Duck;Kim, Tae-Su;Park, Hyoung-Soon;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.138-143
    • /
    • 2007
  • This study goes in for the observation of the characteristics of nitrogen removal from swine wastewater by struvite crystallization. In addition, the struvite formation potential in supernatants after struvite crystallization was investigated. In the study for nitrogen removal by struvite crystallization, the effects of pH and molar ratio of magnesium (Mg) injected using bittern as Mg source were investigated. Also, the potential of struvite formation in the supernatant with amount of Mg added was carefully observed. As the results, the optimum pH in the removal of nitrogen was 8.8 and sludge volume was increased as pH was raised from 7 to 12 under the condition that the molar ratio of $Mg^{2+}$ to ${NH_4}^+$-N to ${PO_4}^{3-}$-P was 1:1:1. An optimum removal efficiency of ammonia-N was observed at 1 molar ratio of Mg to ${NH_4}^+$-N, showing no further increase at over 1 molar ratio and dramatical deterioration at under 1 molar ratio. However, the sludge volume was increased by increasing the molar ratio of Mg. In the experiments for the potential of struvite formation in the supernatants, initial -log([$Mg^{2+}$][${NH_4}^+$][${PO_4}^{3-}$]) value was much lower than $pK_{sp}$ and gradually reached $pK_{sp}$ at 2 days, as the molar ratio of Mg increased over 1.2. At 31 days, -log([$Mg^{2+}$][${NH_4}^+$][${PO_4}^{3-}$]) value was returned to the initial value. In addition, the supernatants had a potential precipitation of hydroxylapatite due to calcium contained in bittern, $K_2Mg(SO_4)_3$ and $K_3Na(SO_4)_2$ resulting from the decrease of sodium and potassium in supernatants formed after struvite crystallization as times go by. Based on the results, it appears that some retention time and proper dosage of Mg may be needed for the prevention of scale in pipe line.

Analyzing the Potential of Offset Credits in the Korean Emission Trading Scheme Focusing on Clean Development Mechanism Projects (CDM사업을 대상으로 한 국내 온실가스 상쇄배출권의 잠재량 산정 및 정책 제언)

  • Kim, Woori;Son, Yowhan;Lee, Woo-Kyun;Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.453-460
    • /
    • 2018
  • The purpose of this study is to analyze the potential quantity of Korean Offset Credits (KOC) resulting from Certified Emission Reductions (CER) in 98 domestic Clean Development Mechanism (CDM) projects that were registered with the United Nations Framework Convention on Climate Change (UNFCCC) as of the end of 2016. Our results show that the total amount of potential KOC is 62,774 kt CO2eq. The potential KOC is only 23.4% of the total CER Issuance. During the first phase, this will be 3.2% of the allocated volume. This is because many projects are related to Renewable Portfolio Standard (RPS), HFC-23, and adipic acid N2O. There is a strong bias in some sectors and projects which could act as market distortion factors. Therefore, it is necessary to expand the target CDM project and activate non CDM offset projects. RPS projects bring fundamental changes to the energy sector, and it is worth reconsidering their acceptability. A wide variety of policy incentives are needed to address strong biases toward certain sectors and projects. The offset scheme has the advantage of allowing entities to reduce their GHG emissions cost effectively through a market mechanism as well as enabling more entities to participate in GHG reduction efforts both directly and indirectly. In contrast, having an inadequate offset scheme range and size might decrease the effort on GHG reduction or concentrate available resources on specific projects. As such, it is of paramount importance to design and operate the offset scheme in such a way that it reflects the situation of the country.

Effects of ursolic acid on muscle mass and bone microstructure in rats with casting-induced muscle atrophy

  • Kang, Yun Seok;Noh, Eun Bi;Kim, Sang Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.45-49
    • /
    • 2019
  • [Purpose] Recent studies suggest that ursolic acid (UA) is a potential candidate for a resistance exercise mimetic that can increase muscle mass and alleviate the deleterious effect of skeletal muscle atrophy on bone health. However, these studies evaluated the effects of UA on skeletal muscle and bone tissues, and they have not verified whether such effect could occur concurrently on muscle and bone, as is the case with resistance exercise. Thus, the aim of this study was to analyze the effect of UA injection on muscle mass and bone microstructure using an animal model of atrophy to demonstrate the potential of UA as a resistance exercise mimetic. [Methods] The immobilization (IM) method was used on the left hindlimb of Sprague Dawley (SD) rats for 10 days to induce muscle atrophy, whereas the right hindlimb was used as an internal control (IC). The animal models were divided into two groups, SED (sedentary, n=6) and UA (n=6) to demonstrate the effect of UA on atrophic skeletal muscles. The UA group received a daily intraperitoneal injection of UA (5 mg/kg/day) for 8 weeks. After 10 days of IM, the data collected for the IC were compared with that of IM to determine whether muscle atrophy might occur. [Results] Muscle atrophy was induced and bone mineral density (BMD) decreased significantly. The 8-week UA treatment significantly increased the gastrocnemius muscle mass compared to the SED group. In regard to the effect of UA on bones, negative results such as a decrease in BMD, trabecular bone volume fraction, and trabecular number, and an increase in trabecular separation, were observed in the SED group, but no such difference was observed in the UA group. No significant difference was observed in atrophic hindlimbs between SED and UA groups. [Conclusion] These results alone are insufficient to suggest that UA is a potential resistance exercise mimetic for atrophic skeletal muscle and weakened bone. However, this study will help determine the potential of UA as a resistance exercise mimetic.

Ionic currents elicited by the hypotonic solution in hamster eggs (저장성 용액에 노출된 햄스터 난자에 관찰되는 이온전류의 변화)

  • Choi, Won-yeong;Kim, Yang-mi;Haan, Jae-hee;Huh, Il-oh;Park, Choon-ok;Hong, Seong-geun;Pyu, Pan-dong;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.305-312
    • /
    • 1996
  • Cell volume regulatory mechanisms are usually disclosed by exposure of cell to anisotonic media. If a cell is suddenly exposed to hypotonic media, it swells initially like an osmometer but within minutes regains its original cell volume. This behavior has been labelled as regulatory cell volume decrease(RVD). RVD is believed to result from the loss of permeable ions through the membrane. In this study, we examined hypotonically induced changes in the membrance currents involved in RVD by using whole cell voltage clamp technique in the unfertilized hamster egg. At -40mV of the holding potential, the stationary current was maintained in the hamster egg exposed to isotonic solution composed of, mainly, 115mM NaCl and 40mM mannitol. Hypotonic solution was prepared by removing mannitol. Therefore, the concentrations of $Na^+$ and $Cl^-$ in this hypotonic media were the same as those in the isotonic solution. Following 30 to 60 sec after applying the hypotonic media to the egg, the inward current was evoked. This inward current was eliminated by $100{\mu}M$ 4-acetamido-4'-isothiocyanostil-bene-2,2'-disulfonic acid(SITS), an anion channel blocker, leaving the small outward current component. Further addition of 2mM $Ba^{2+}$, a broad $K^+$ channel blocker, completely abolished the small outward current left even in the presence of SITS during hypotonic stress. These results suggest that $K^+$ and $Cl^-$ move out of cells, resulting in RVD. To test the involvement of $Na^+$ in RVD, 20mM Na-isethionate was substituted for mannitol in isotonic media(135mM $Na^+$) and Na-isethionate (20mM) was freed the hypotonic solution. Only $Cl^-$ concentration in both isotonic and hypotonic media was kept constant at 115mM, whereas concentration of $Na^+$ was lowered in hypotonic solution to 115mM from 135mM in isotonic solution. Hypotonic medium induced the outward current in the egg equilibrated isotonically. This current was reduced by $100{\mu}M$ SITS but was augmented by 2 mM $Ba^{2+}$. In terms of RVD, these results imply that $Cl^-$ efflux is coupled with $K^+$, maybe for electroneutrality during hypotonic stress and/or with $Na^+$ via unknown transport mechanism(s). From the overall results, the hypotonic stress facilitates the movement of $Cl^-$ and $K^+$ out of the hamster egg to regain cellular volume with electroneutrality. If there exist a difference in $[Na^+]_0$ between isotonic and hypotonic solution, another transport mechanism concerned with $Na^+$ may, at least partly, participate in regulatory volume decrease.

  • PDF

Effects of Bee Venom Herbal Acupuncture on Experimental Rat Model of Benign Prostatic Hyperplasia (봉독약침(蜂毒藥鍼)이 전립선비대증(前立腺肥大症) Rat에 미치는 영향)

  • Cho, So-Hyun;Han, Yang-Hee;Kim, Young-Seong
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.166-176
    • /
    • 2010
  • Objective : Benign prostatic hyperplasia(BPH) is one of the most common diseases among elderly men. In BPH, dihydrotestosterone (DHT) acts as a potent cellular androgen and promotes prostate growth. Many reports conclude the component melittin in bee venom has the potential to treat various diseases including prostate cancer. In this study, we investigated the therapeutic effects and action mechanism of Bee venom herbal acupuncture with BPH induced by castration and testosterone treatment. Methods : Sprague-Dawley rats were treated with testosterone after castration for induction of experimental BPH. A total of 24 rats were equally divided into four groups: Group 1 was the model group; Group 2 served as control (sham-operated group); Group 3 animals were treated with Bee venom herbal acupuncture as an experimental specimen; Group 4 served as a positive control group and was treated with finasteride at a dose of 1 mg/kg. The drugs were administered orally. The prostates were evaluated by prostatic weight, volume, histopathological changes and testosterone levels. Results : While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation, the rats treated with Bee venom herbal acupuncture showed a diminished range of tissue damage and showed significant decrease in their prostatic weights, volume and histopathological examination. Conclusions : These results suggest that Bee venom herbal acupuncture may protect the glandular epithelial cells and also inhibit stromal proliferation. From theses results, we suggest that Bee venom herbal acupuncture could be a useful remedy agent for treating the benign prostatic hyperplasia.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates

  • Lakshmipathi, Jakkamputi;Vasudevan, Rajamohan
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2019
  • In the present study, the various dynamic properties of MWCNT embedded fiber reinforced polymer uniform and tapered composite (MWCNT-FRP) plates are investigated. Various configurations of a tapered composite plate with ply-drop off and uniform composite plate have been considered for the development of the finite element formulation and experimental investigations. First order shear deformation theory (FSDT) has been used to derive the kinetic and potential energy equations of the hybrid composite plates by including the effect of rotary inertia, shear deformation and non-uniformity in thickness of the plate. The governing equations of motion of FRP composite plates without and with MWCNT reinforcement are derived by considering a nine- node rectangular element with five degrees of freedom (DOF) at each node. The effectiveness of the developed finite element formulation has been demonstrated by comparing the natural frequencies and damping ratio of FRP composite plates without and with MWCNT reinforcement obtained experimentally. Various parametric studies are also performed to study the effect of CNT volume fraction and CNT aspect ratio of the composite plate on the natural frequencies of different configurations of CNT reinforced hybrid composite plates. Further the forced vibration analysis is performed to compare the dynamic response of the various configurations of MWCNT-GFRP composite plate with GFRP composite plate under harmonic excitations. It was observed that the fundamental natural frequency and damping ratio of the GFRP composite plate increase approximately 8% and 37% respectively with 0.5wt% reinforcement of MWCNT under CFCF boundary condition. The natural frequencies of MWCNT-GFRP hybrid composite plates tend to decrease with the increase of MWCNT volume fraction beyond 2% due to agglomeration of CNT's. It is also observed that the aspect ratio of the CNT has negligible effect on the improvement of dynamics properties due to randomly orientation of CNT's.

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

  • Han, Yong-Seok;Lee, Jun Hee;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.