• Title/Summary/Keyword: Volume crystallization

Search Result 91, Processing Time 0.015 seconds

Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube (PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성)

  • Kim, Jeong Ho;Son, Kwonsang;Lee, Minho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Nanocomposites based on poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) and poly(ethylene terephthalate) (PET)/(PVDF) blended with carbon fibers (CF) and carbon nanotube (CNT) were prepared by melt mixing in the twin screw extruder. Morphologies of the PMMA/PVDF/CF/CNT and PET/PVDF/CF/CNT nanocomposites were investigated using SEM. The aggregation of CNT was observed in PMMA/PVDF/CF/CNT nanocomposites while the good dispersion of CNT was shown in PET/PVDF/CF/CNT nanocomposites. In SEM image of PET/PVDF/CF/CNT nanocomposite, the CNT were mainly located at the PET domain of phase-separated PET/PVDF blend due to the ${\pi}-{\pi}$ interaction between the phenyl ring of PET and graphite sheet of the CNT's surface. In addition, a fairly good compatibility between PET/PVDF matrix and CF was shown in the SEM image. In the case of PET/PVDF nanocomposites blended with the co-addition of CF and CNT, the volume electrical resistivity decreased while no change was observed in PMMA/PVDF/CF/CNT composites. The degree of CNT dispersion in morphology results was consistent with the electrical conductivity results. From the DSC results, the crystallization temperature (Tc) of PET/PVDF/CF/CNT nanocomposites increased due to the co-addition of CF and CNTs acting as a nucleating agent. Flexural modulus of PET/PVDF/CF/CNT were sharply enhanced due to increasing the interaction between PET and CF.