• Title/Summary/Keyword: Volume branch

Search Result 226, Processing Time 0.024 seconds

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Application of computer algorithms for modelling and numerical solution of dynamic bending

  • Jianzhong, Qiu;Naichang, Dai;Akbar Shafiei, Alavijeh
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.143-152
    • /
    • 2023
  • In this paper, static and dynamic bending of nanocomposite micro beam armed with CNTs considering agglomeration effect is studied. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The micro beam is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the static and dynamic deflections are decreased. In addition, enhancing the nonlocal parameter yields to higher static and dynamic deflections.

Numerical analysis of beams with damping subjected to dynamic loading

  • A.A. Mosallaie Barzoki;M. Saadantia;Hamed Karami
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.91-96
    • /
    • 2023
  • In this article, the vibration response of elastic nanocomposite beams with enhanced damping by nanoparticles is presented based on the mathematical model. Damp construction is considered by spring and damper elements based on the Kelvin model. Exponential shear deformation beam theory (ESDBT) has been used to model the structure. The mixed model model is used to obtain the effective properties of the structure including compaction effects. Using the energy method and Hamilton's principle, the equations of motion are calculated. The beam frequency is obtained by analytical method. The purpose of this work is to investigate the effect of volume percentage of nanoparticles and density, length and thickness of the beam on the frequency of the structure. The results show that the frequency increases with the increase in volume percentage of nanoparticles.

Modeling of truncated nanocompositeconical shell structures for dynamic stability response

  • S.M.R. Allahyari;M. Shokravi;T.T. Murmy
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.325-334
    • /
    • 2024
  • This paper deals with the dynamic buckling behavior of truncated conical shells composed of carbon nanotube composites, an important area of study in view of their very wide engineering applications in aerospace industries. In this regard, the effective material properties of the nanocomposite have been computed using the Mori-Tanaka model, which has already been established for such analyses. The motion equations ruling the structure's behavior are derived using first order shear deformation theory, Hamilton's principle, and energy method. This will provide adequate background information on its dynamic response. In an effort to probe the dynamic instability region of the structure, differential quadrature method combined with Bolotin's method will be adopted to tackle the resulting motion equations, which enables efficient and accurate analysis. This work considers the effect of various parameters in the geometrical parameters and the volume fraction of CNTs on the structure's DIR. Specifically, it became clear that increasing the volume fraction of CNTs shifted the frequency range of the DIR to higher values, indicating the significant role of nanocomposite composition regarding structure stability.

A Quantitative Ultrastructural Study on the Effects of Ischemia and Reperfusion on the Rat and Cat Hearts (허혈 및 재관류가 흰쥐 및 고양이 심장에 미치는 영향에 관한 형태계측학적 연구)

  • Park, Young-Sik;Uhm, Chang-Sub;Suh, Young-Suk
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.42-54
    • /
    • 1992
  • To understand the structural changes of the myocardial myocytes and endothelial cells in ischemic and reperfused heart, and to elucidate their roles in those conditions, the authors observed cat and rat myocardium ultrastructurally and evaluated them with morphometric techniques. In cat, mild ischemia and moderate degree reperfusion injury was induced by ligation of the anterior interventricular branch of left coronary artery and reperfusion. In rat, severe ischemia and irreversible reperfusion iniury was made using in vitro Langendorff techniques. In normal cat myocytes, the volume densities of cytoplasm, myofibrils, mitochondria, sarcoplasmic reticulum and T tubules were $0.11{\pm}0.013,\;0.51{\pm}0.096,\;0.25{\pm}0.082,\;0.09{\pm}0.008,\;0.02{\pm}0.010$ (Mean${\pm}$S.D.) respectively, and the myofibril/mitochondria ratio was $2.33{\pm}1.379$. The numerical density and average volume of mitochondria were $0.76{\pm}0.210/{\mu}m^3$ and $0.33{\pm}0.057{\mu}m^3$ respectively. In normal cat endothelial cells, the volume densities of cytoplasm, cytoplasmic vesicles, tubular systems (including endoplasmic reticulum and Golgi apparatus) and mitochondria were $0.43{\pm}0.023,\;0.28{\pm}0.007,\;0.22{\pm}0.021,\;0.03{\pm}0.014$ respectively. The mean thickness of endothelial cells was $230{\pm}45.2{\mu}m$. The numerical density and average volume of cytoplasmic vesicles were $508{\pm}55.0/{\mu}m^3,\;578{\pm}104.8nm^3$ respectively. In cat myocytes which received mild ischemic injury, the volume densities of organelles were not changed significantly in ischemic and reperfusion states. In reperfusion group myocytes, the numerical density of mitochondria was decreased significantly and the average volume was increased significantly. In endothelial cells, the volume density of tubular system in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group were increased significantly. In rat myocytes which received severe ischemic injury, the volume density and average volume of mitochondria were increased significantly, and the volume density of sarcoplasmic reticulum and numerical density of mitochondria were decreased significantly in both ischemic and reperfusion groups. In ischemic and reperfused endothelial cells, the volume density and numerical density of cytoplasmic vesicles, the volume density of cytoplasm were decreased significantly. The volume densities of tubular system were increased significantly in both ischemic and reperfused groups. The volume density of mitochondria in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group showed significant increase. The authors, based on the above observations, conclude that the mitochondria of myocytes and the cytoplasmic vesicles of endothelia are the first group of targets in ischemic and reperfusion injury and in this respect, the degree of ischemic insult is not significant. The role of myocyte mitochondria in reperfusion injury may be insignificant, but endothelial cells may contribute actively to reperfusion injury.

  • PDF

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.663-686
    • /
    • 2014
  • This paper deals with free vibration analysis of bidirectional functionally graded annular plates resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The fast rate of convergence of the method is shown and the results are compared against existing results in literature. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded materials.

Surge Phenomena Analytically Predicted in a Multi-stage Axial Flow Compressor System in the Reduced-Speed Zone

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.110-124
    • /
    • 2014
  • Surge phenomena in the zone of reduced speeds in a system of a nine-stage axial flow compressor coupled with ducts were studied analytically by use of a surge transient simulation code. Main results are as follows. (1) Expansion of apparently stable, non-surge working area of the pressure vs. flow field beyond the initial stage-stall line was predicted by the code in the lower speed region. The area proved analytically to be caused by significantly mismatched stage-working conditions, particularly with the front stages deep in the rotating stall branch of the characteristics, as was already known in situ and in steady-state calculations also. (2) Surge frequencies were found to increase for decreasing compressor speeds as far as the particular compressor system was concerned. (3) The tendency was found to be explained by a newly introduced volume-modified reduced surge frequency. It suggests that the surge frequency is related intimately with the process of emptying and filling of air into the delivery volume. (4) The upstream range of movement of the fluid mass having once passed through the compressor in surge was found to reduce toward the lower speeds, which could have caused additionally the increase in surge frequency. (5) The concept of the volume-modified reduced surge frequency was able to explain, though qualitatively at present, the behaviors of the area-pressure ratio parameter for the stall stagnation boundary proposed earlier by the author.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

Economic optimization and dynamic analysis of nanocomposite shell conveying viscous fluid exposed to the moving load based on DQ-IQ method

  • Ali Chen;Omidreza Masoudian;Gholamreza Soleimani Jafari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.567-581
    • /
    • 2024
  • In this paper, an effort is made to present a detailed analysis of dynamic behavior of functionally graded carbon nanotube-reinforced pipes under the influence of an accelerating moving load. Again, the material properties of the nanocomposite pipe will be determined by following the rule of mixtures, considering a specific distribution and volume fraction of CNTs within the pipe. In the present study, temperature-dependent material properties have been considered. The Navier-Stokes equations are used to determine the radial force developed by the viscous fluid. The structural analysis has been carried out based on Reddy's higher-order shear deformation shell theory. The equations of motion are derived using Hamilton's principle. The resulting differential equations are solved using the Differential Quadrature and Integral Quadrature methods, while the dynamic responses are computed with the use of Newmark's time integration scheme. These are many parameters, ranging from those connected with boundary conditions to nanotube geometrical characteristics, velocity, and acceleration of the moving load, and, last but not least, volume fraction and distribution pattern of CNTs. The results indicate that any increase in the volume fraction of CNTs will lead to a decrease in the transient deflection of the structure. It is also observed that maximum displacement occurs with an increase in the load speed, slightly delayed compared to decelerating motion.