• Title/Summary/Keyword: Volume and temperature of gas

Search Result 461, Processing Time 0.029 seconds

A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility (수소생산시설에서의 수소폭발의 안전성평가 방법론 연구)

  • Jae, Moo-Sung;Jun, Gun-Hyo;Lee, Hyun-Woo;Lee, Won-Jae;Han, Seok-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In that case of hydrogen release, there lies a danger of explosion. However, from the point of thermal-hydraulics view, the long distance of them makes lower efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy are researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor are evaluated and classified by detonation volume and distance. Also based on standard safety criteria which is value of $1{\times}10^{-6}$, safety distance between the very high temperature gas cooled reactor and the hydrogen production facility is calculated.

Optimization of the Pt Nanoparticle Size and Calcination Temperature for Enhanced Sensing Performance of Pt-Decorated In2O3 Nanorods

  • Choi, Seung-Bok;Lee, Jae Kyung;Lee, Woo Seok;Ko, Tae Gyung;Lee, Chongmu
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1444-1451
    • /
    • 2018
  • The surface-to-volume ratio of one-dimensional (1D) semiconductor metal-oxide sensors is an important factor for achieving good gas sensing properties because it offers a wide response area. To exploit this effect, in this study, we determined the optimal calcination temperature to maximize the specific surface area and thereby the sensitivity of the sensor. The $In_2O_3$ nanorods were synthesized by using vapor-liquid-solid growth of $In_2O_3$ powders and were decorated with the Pt nanoparticles by using a sol-gel method. Subsequently, the Pt nanoparticle-decorated $In_2O_3$ nanorods were calcined at different temperatures to determine the optimal calcination temperature. The $NO_2$ gas sensing properties of five different samples (pristine uncalcined $In_2O_3$ nanorods, Pt-decorated uncalcined $In_2O_3$ nanorods, and Pt-decorated $In_2O_3$ nanorods calcined at 400, 600, and $800^{\circ}C$) were determined and compared. The Pt-decorated $In_2O_3$ nanorods calcined at $600^{\circ}C$ showed the highest surface-to-volume ratio and the strongest response to $NO_2$ gas. Moreover, these nanorods showed the shortest response/recovery times toward $NO_2$. These enhanced sensing properties are attributed to a combination of increased surface-to-volume ratio (achieved through the optimal calcination) and increased electrical/chemical sensitization (provided by the noble-metal decoration).

A Study on the Combustion Characteristics of Methane-air Mixture in Constant Volume Combustion Chamber (정적 연소실내의 메탄-공기 혼합기의 연소 특성에 관한 연구)

  • 이창식;김동수;오군섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.201-209
    • /
    • 1996
  • This study describes the combustion characteristics of methance-air mixture with various equivalence retio and initial conditions of mixture in constant volume combustion chamber. Combustion characteristics of methane-air mixture such as combustion pressure, combustion temperature, and heat release were investigated by the measurement of combustion pressure and temperature in the combustion chamber. The results show that maximum combustion pressure, gas temperature and rate of heat release have peaks at equivalence ratio of 1.1. Combustion duration is also the shortest at the equivalence ratio of 1.1 and it is shortened as initial mixture temperature increases.

  • PDF

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF

Performance Analysis of a Reciprocating Compressor Using a Real Gas Equation of State (실제기체 상태방정식을 이용한 왕복동압축기의 성능해석)

  • Kim, J.W.;Kim, H.J.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 1992
  • This paper addresses performance analysis of a reciprocating compressor. A computer simulation model has been developed to predict and estimate the compressor performance. Instead of using ideal gas equations, real gas equations are used in describing the state of gas. The compressor simulation model consists of a cylinder control volume, suction system and discharge system. Conservation laws of mass and energy are applied to the cylinder section only, The suction and discharge system are described by the Helmholtz resonator modeling. Some of input data required for the simulation have been obtained from experiments. These experimentally obtained input data are effective flow area, effective force area and dynamic characteristics of valves. Simulation results of real gas equations have been compared with those of ideal gas equations. It has been found that the simulation with real gas equations yields lower cylinder temperature and heat transfer compared with those of ideal gas equations. Differences in pressure, mass flowrates, valve motions and gas pulsations are found quite small.

  • PDF

Effect of Packaging Conditions on the Fruit Quality of Chinese Quince

  • An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.683-687
    • /
    • 2006
  • The respiration rate of Chinese quince was measured at 0, 5, 10, and $20^{\circ}C$ to determine its tolerable range of storage temperatures. Based on the measured respiration rates, plastic films covering a wide range of gas permeabilities were used for packaging and storing individual Chinese quince at 0 and $10^{\circ}C$. Chinese quince can be categorized as low respiration fruit. Higher respiratory quotients were observed at higher temperature suggesting that the tolerable temperature range for storage is $0-10^{\circ}C$. Packages containing Chinese quince wrapped in highly gas-permeable polyolefin film PD 941 attained, with progressive decreases in volume, 9.5-10.2% $O_2$ and 1.3-1.8% $CO_2$ at $0^{\circ}C$, 8.1% $O_2$ and 2.4% $CO_2$ at $10^{\circ}C$. At these levels, PD 941 could preserve the fruit at acceptable quality levels for 152 and 50 days at 0 and $10^{\circ}C$, respectively. Less gas-permeable packages built up high $CO_2$ concentrations (above 15.8%) and low $O_2$ concentrations (less than 1.8%) causing free volume expansion and eventual dark discoloration of the fruit. The storage life realized by packaging with polyolefin film PD 941 could facilitate the availability of Chinese quinces in winter and spring for medicinal or ornamental purposes in the fresh state.

The study of catalytic combustion of VOCs (휘발성 유기염소화합물의 촉매연소 연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.169-177
    • /
    • 2006
  • In this study, it was studied that the removal rate of VOC by the catalytic combustion. The combustion temperature was changed by the contact type of VOC(space velocity and catalyst depth) and the space velocity(SV) was defined by the rate of gas volume flow rate(Q, $m^3/hr$) over volume(V, $m^3$) of catalyst (SV=Q/V). The space velocity of catalytic combustor is maintained $10,000{\sim}50,000hr^{-1}$. it was studied that the conversion rate of VOC by the catalytic combustion. The combustion temperature was changed by the contact type of VOC and catalyst and the space velocity was defined by the rate of gas volume flow rate over volume of catalyst. The VOC which pass thru the heat exchanger was measured by the hydro ionic detector and measured the VOC removal rate by the activated catalyst in the reaction temperature range of 373K-423K. The removal rate was measured over 100 times. In the automobile painting booth The VOC concentration was 63.37ppm and the removal rate was 70 % at 373K and 78.92% at 423K. The removal rate was increased as increased the temperature.

  • PDF

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF

Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum (밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF