• Title/Summary/Keyword: Volume Size Distribution

Search Result 556, Processing Time 0.035 seconds

An Empirical Study on Berth-Length Calculation of Container Terminal (컨테이너 터미널 안벽길이 산정에 관한 실증 연구)

  • 송용석;남기찬;연정흠;김정은
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.115-120
    • /
    • 2003
  • This study aims at calculating berth length required of the given volume of containers. For this, unlike previous studies assuming 300,000 TEU per berth as the capacity of a berth, this study attempts to apply more realistic situation such as the distribution of vessel size, lifts per vessel, berth time by vessel size, and average berth occupancy ratio. the result are compared with that of Pusan New port planning.

  • PDF

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

A Computer method in Economical Design of Conductor Sizes of Distribution Lines (전자계산기에 의한 배전선료전선 단면적의 경제적 설계법)

  • Young Moon Park
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.107-110
    • /
    • 1975
  • This paper describes computational algorithms and a computer program for optimum determinations of wire conductor sizes of radial or tree-type distibution lones with given constraints. Here, The objective function is defined as the total summation of the volume or weight of respective conductor materials required for buildingup the entire distributing system. Four categories of constraints are applied to the obiective function. That is, on the respective load points constraint is imposed by a specified voltage drop limit, and the respective line elements are capable of carrying the current safely(safety current) and also must maintain the minimum thickness in viewpoint of mechanical strength and legal requirements. And finally, the conductor sizes have to be selected among the standardized size levels of the products. These kinds of optimization problems cannot be solved by the ordinary optimization tediniques such as the Linear Programming Method, SUMT Technique, etc. This paper, therefore, successfully devised the powerful alorithms to solve the problem, using the particular properties or characteristics ingerent to the radial or tree-type distribution system. The computer program developed from the algorithms was applied to several sample systems and shown to be exact and very efficient.

  • PDF

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

The Role of Superparamagnetic Particle Size Distribution and Ferromagnetic Phase on GMR in Granular Cu-Co Alloys

  • Kumiski, M;Waniewska, A.Slawska;Lachowicz, H.K
    • Journal of Magnetics
    • /
    • v.4 no.3
    • /
    • pp.80-83
    • /
    • 1999
  • Relations between giant magnetoresistance (GMR) characteristic, magnetic properties and structure were investigated in Cu90Co10 alloy obtained by melt spinning in which GMR was enhanced by appropriate annealing. The structure of the annealed sample is not homogeneous (though the sizes distribution of the majority of Co-particles is not very wide but much larger particles are also present). On the other hand, the GMR characteristics differs from that expected theoretically for identical superparamagnetic particles. It is shown that ther main sources of the observed non-quadratic magnetoresistance dependence on magnetization are differentialted surface to volume ratio of superparamagnetic particles and the ferromagnetic phase contribution to the total magnetization which was calculated applying the new method.

  • PDF

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Chemical Characterization of Water-Soluble Organic Acids in Size-Segregated Particles at a Suburban Site in Saitama, Japan

  • Bao, Linfa;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2009
  • Saturated n-dicarboxylic acids ($C_2-C_7$, $C_9$), unsaturated dicarboxylic acids (maleic, fumaric, phthalic acid), ketocarboxylic acids (pyruvic, glyoxylic acid), and dicarbonyls (glyoxal, methylglyoxal) were determined in size-segregated samples with a high-volume Andersen air sampler at a suburban site in Saitama, Japan, May 12-17 and July 24-27, 2007 and January 22-31, 2008. The seasonal average concentrations of these detected organic acids were 670 $ng/m^3$, accounting for about 4.4-5.7% (C/C) of water-soluble organic carbon (WSOC) and 2.3-3.6% (C/C) of organic carbon (OC). The most abundant species of dicarboxylic acids was oxalic acid, followed by malonic, phthalic, or succinic acids. Glyoxylic acid and methyglyoxal were most abundant ketocarboxylic acid and dicarbonyl, respectively. Seasonal differences, size-segregated concentrations, and the correlations of these acids with ambient temperatures, oxidants, elemental carbon (EC), OC, WSOC, and ionic components were also discussed in terms of their corresponding sources and possible secondary formation pathways. The results suggested that photochemical reactions contributed more to the formation of particulate organic acids in Saitama suburban areas than did direct emissions from anthropogenic and natural sources. However, direct emissions of vehicles were also important sources of several organic acids in particles, such as phthalic and adipic acids, especially in winter.

A Study on the Behaviors of Complex System Revealed in the Sizes of Public Libraries in Korea (우리나라 공공도서관의 규모에 나타나는 복잡계 현상에 관한 연구)

  • Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.44 no.4
    • /
    • pp.399-419
    • /
    • 2013
  • This paper conducted the empirical analysis of the behaviors revealed in the eight size distributions of the public libraries in Korea. As a result, the behaviors of complex system appeared in all eight size factors. This means that the sizes of public libraries in Korea were highly polarized. Especially, the zipf's law were found in the size factors such as gross area, number of staffs, volume of books, total budget. And the highly uneven distributions were occurred in the size factors such as membership, number of users, number of borrowers, number of borrowed books. This research outcomes show that a new policy of public libraries is needed to resolve the polarization revealed in the sizes of public libraries in Korea.

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.

An Experimental Study on the Analyze the Pressure Difference in case of Fire in Vertical Space of High-Rise Buildings (고층건축물 수직공간의 화재 시 압력차 분석을 위한 실험적 연구)

  • Huh, Yerim;Kim, HyeWon;Jin, SeungHyeon;Kwon, YoungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.111-112
    • /
    • 2020
  • As buildings in South Korea become more skyscrapers, the risk of fire is also emerging. Thus, regulations, regulations, and guidelines are being improved to prevent the spread of smoke in the event of a fire in high-rise buildings, but research on smoke flow and pressure distribution in vertical spaces is insufficient. Therefore, in this study, the temperature of each floor in the vertical space according to the size of the fire is measured through the miniature model experiment, and the pressure difference is calculated to establish the basic data for the improvement of the performance of domestic air supply facilities in the future. Thus, a scale model of one-sixth the size of the actual building was produced to measure the temperature, and the pressure difference was derived by substituting the value for the expression. The pressure difference varies depending on the size of the cause of the fire, and it is believed that the differential pressure and conditions of the building should be taken into account before calculating the supply volume for the analysis of the pressure difference according to the size of the cause of the fire in the event of fire.

  • PDF