• 제목/요약/키워드: Volume Relaxation

검색결과 116건 처리시간 0.029초

6-방정식 확산경계 모델을 이용한 압축성 고체 및 액체에서 충격파 해석 (NUMERICAL ANALYSIS OF THE SHOCK WAVES IN COMPRESSIBLE SOLIDS AND LIQUIDS USING A SIX-EQUATION DIFFUSE INTERFACE MODEL)

  • 염금수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.99-107
    • /
    • 2012
  • In this paper, the shock waves in compressible solids and liquids are simulated using a six-equation diffuse interface multiphase flow model that is extended to the Cochran and Chan equation of state. A pressure relaxation method based on a volume fraction function and a pressure-correction equation are newly implemented to the six-equation model. The developed code has been validated by a shock tube problem with liquid nitromethane and an impact problem of a copper plate on a solid explosive. In addition, a new problem, an impact of a copper plate on liquid nitromethane, has been solved. The present code well shows the wave structures in compressible solids and liquids without any numerical oscillations and overshoots. After the impact of a solid copper plate on liquid, two shock waves (one propagates into liquid and the other into solid) are generated and a material interface moves to the impacting direction. The computational results show that the shock velocity inside the liquid linearly increases with the impact velocity.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성 (Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition)

  • 박승일;지형용;김명준;김근주
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

General Pharmacological Study of GCSB-5, a Herbal Formulation

  • Park, Sang-Won;Lee, Chan-Ho;Kim, Sung-Hwa;Cho, Young-Jae;Heo, Jeong-Haing;Park, Jin-Gu;Cheon, Ho-Jun;Lee, Sung-Youl;Kim, Jie-Wan;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제14권4호
    • /
    • pp.194-201
    • /
    • 2006
  • The general pharmacological properties of GCSB-5, a herbal formulation consisting of 6 Oriental herbs(Ledebouriellae Radix, Achyranthis Radix, Acanthopanacis Cortex, Cibotii Rhizoma, Glycine Semen and Eucommiae Cortex), were investigated in mice, rats, guinea pigs and rabbits. The administration of GCSB-5 had no effect on general behavior, and did not influence the central nervous system. Mean blood pressure, heat1 and respiratory rate and contractile response of the isolated guinea pig atrium were unaffected by the treatment of GCSB-5. Addition of GCSB-5 did not cause spontaneous relaxation and contraction of the isolated guinea pig ileum and rat uterus. And also, GCSB-5 had no effect on the gastrointestinal system and the blood system of the animals examined in this study. GCSB-5, at higher doses(1,000 and 3,000 mg/kg), increased the urinary excretion of electrolytes, however, the urine volume and pH in rats were unaffected. Taken together, these results indicate that GCSB-5 does not induce any adverse effects in experimental animals and is expected to have no significant general pharmacological activities.

Lamin A/C and Polymeric Actin in Genome Organization

  • Ondrej, Vladan;Lukasova, Emilie;Krejci, Jana;Matula, Pavel;Kozubek, Stanislav
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.356-361
    • /
    • 2008
  • In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.

General Pharmacological Properties of YJA20379-2, a New Antiulcer Agent

  • Lee, Eun-Bang;Cho, Sung-Ig;Cheon, Seon-Ah;Chang, Man-Sik;Kim, Kyu-Bong;Woo, Tae-Wook;Chung, Young-Kuk
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.72-78
    • /
    • 2000
  • The general pharmacological properties of YJA20379-1 2-dimethylamino-4,5-dihydrothiazolo[4,5:3,4]pyridol[1,2-a]benzoimidazole, a novel proton pump inhibitor with antiulcer activities were investigated in mice, rats, guinea pigs and rabbits. YJA20379-2 at oral doses of 50, 100 and 200 mg/kg did not affect the general behaviour, hexobarbital hypnosis and motor coordination in mice. The drug did not have analgesic or anticonvulsant action at 200 mg/kg. Locomotor activity and body temperature were not influenced at 100 mg/kg. At a concentration up to 2{\times}10^{-4} g/ml$, YJA20379-2 did not produce any contraction or relaxation of isolated preparations, such as the rat fundus, the guinea pig ileum and the rat uterus, and did not antagonize the contractile response to several spasmogens, such as histamine, acetylcholine, serotonin and oxytocin. At dosages up to 200 mg/kg p.o. YJA20379-2 did not affect the pupil size of mice. Intestinal propulsion of mice was not affected up to 200 mg/kg p.o. and the drug did not affect urinary excretion at 100 mg/kg p.o. These results indicate that at dosages up to 100 gm/kg p.o. YJA20379-2 was found not to affect this pharmacological profile. However, at 200 mg/kg the drug lowered body temperature and showed decreased in locomotor activity and urine volume.

  • PDF

단축압출기 고체수송부에서의 비등온 열전달 현상에 관한 수치 해석 (Numerical Analysis of the Non-Isothermal Heat Transfer in Solids Conveying Zone of a Single Screw Extruder)

  • 안영철
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.549-556
    • /
    • 2005
  • 단축압출기의 압출공정에서 고체수송부의 열전달 현상에 미치는 무차원수의 효과를 수치 해석적인 방법으로 연구하였다. 스크루의 기하학적 구조 및 특성에 따른 압출기 내에서의 고체 흐름 상태에 대한 이해를 바탕으로 고체 수송부에 대하여 열 수지 방정식을 세우고 무차원화하였다. 이에 유한체적법과 멱법칙 도식을 적용하여 이산화 방정식을 유도한 다음 반복 대입법과 완화법으로 해를 구하였다. 고체수송부의 열전달 특성을 규정하는 무차원수인 Biot 수와 Peclet 수가 수지 공급부의 온도와 고체수송부의 길이에 끼치는 영향을 조사하였다. Biot 수가 증가하면 냉각에 의한 열 손실이 지배하여 배럴의 온도는 급격히 감소하지만 고체층의 온도와 고체수송부의 길이에 미치는 영향은 적으며, Peclet 수가 증가하면 대류 항이 지배하여 고체층의 온도가 감소하고 고체수송부의 길이가 증가한다.

$k-{\varepsilon}-{\overline{v^{'2}}}$난류 모델을 이용한 충돌 제트의 유동 및 열전달 특성에 관한 수치해석적 연구 (Numerical Simulation of Flow and Heat Transfer Characteristics of Impinging Jet Using $k-{\varepsilon}-{\overline{v^{'2}}}$ Model)

  • 최범호;이정희;최영기
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.204-213
    • /
    • 2000
  • This study deals with jet impingement, which is extensively used in the process industries to achieve intense heating, cooling or drying rates and also widely employed as a test flow for turbulent models due to its complex flow configuration, on a flat plate by numerical methods. In this calculation, the finite volume method was employed to solve the Navier-stokes equation based on the non-orthogonal coordinate with non-staggered variable arrangement. To get a better understanding for the fluid flow and heat transfer characteristics of the turbulent jet impingements, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model was adapted and compared with the experimental data and the result of standard $k-{\varepsilon}$ turbulent model. Numerical calculations were carried out with various flow rates, nozzle to plate distances. In the case of the axisymmetric jet impingement on a flat plate, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model showed better agreement with the experimental data than the standard $k-{\varepsilon}$ turbulent model in the prediction of the mean velocity profiles, the turbulent velocity profiles. the turbulent shear stress and the heat transfer rate. The highest heat transfer rate can be obtained when the impingement occurs within the potential core..

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구 (Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy)

  • 김정한;염종택;박노광;이종수
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.