• Title/Summary/Keyword: Volume Ionization

Search Result 82, Processing Time 0.026 seconds

A Study on Correlation between A/F and ion signal in a Constant-Volume Chamber Using Spark-plug Ionization Probe Itself (정적챔버에서 스파크 플러그 이온프로브를 이용한 공연비와 이온신호와의 상관관계에 대한 연구)

  • Park, Jong-Il;Chun, Kwang-Min;Hahn, Jae-Won;Park, Chul-Woong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.223-229
    • /
    • 2002
  • Spark plug ionization signal could be useful in an internal combustion engine as a feedback signal for combustion diagnostics such as misfire detection, knocking detection and lambda control, but the signal has high level of cyclic fluctuation in an internal combustion engine due to residual gas, pressure, temperature, mixture composition in the spark gap. Because of this reason it is very difficult to apply ion signal to commercial engine control. In this Study, a correlation between A/F and spark plug ionization signal was studied in a constant volume chamber. Constant volume chamber with gas phase fuel(Propane) has homogeneous fuel composition , no mixture flow, same pressure and temperature on each test. The results show that mean chemi-ion signal has the highest correlation with A/F and intial pressure change has on effect on the thermal-ion signal and not on chemi-ion signal.

  • PDF

A LONG-TERM FIELD TEST OF A LARGE VOLUME IONIZATION CHAMBER BASED AREA RADIATION MONITORING SYSTEM DEVELOPED AT KAERI

  • Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Kim, Jung-Bok;Kim, Young-Kyun;Jin, Hyung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • An Area Radiation Monitoring System (ARMS) ionization chamber, which had an 11.8 L active volume, was fabricated and performance-tested at KAERI. Low leakage currents, linearities at low and high dose rates were achieved from performance tests. The correlation coefficients between the ionization currents and the dose rates are 1 at high dose rate and 0.99 at low dose rate. In this study, an integration-type ARMS ionization chamber was tested over a year for an evaluation of its long-term stability at a radioisotope (RI) repository of the Young-gwang nuclear power plant. The standard deviation of dose rate of 1 day data and over a 100-days mean value were 6.2 $\mu$R/h and 2.9 $\mu$R/h, respectively. The fabricated ARMS ionization chamber showed stable performance from the results of the long-term tests. Design and performance characteristics of the fabricated ionization chamber for the ARMS from performance-tests are also addressed.

Low ionization state plasma in CMEs

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2012
  • The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.

  • PDF

A Study of Polarity Effect of Parallel Plate Type ionization Chamber with Different Volume (평행평판형 전리함의 두 전극간의 거리에 따른 극성효과 연구)

  • 윤형근;신교철
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.69-73
    • /
    • 2002
  • Exposure measurement data with parallel plate ionization chambers were known to depend on the polarity ($k_{pol}$) effect. In this work, the polarity effect were investigated for three parallel plate ionization chambers with different volume. The ionization chamber was fabricated using acrylic plate for the chamber medium and printed circuit board for electrical configuration. The various sizes of the sensitive volumes designed so far were 0.9, 1.9, and 3.1 co. High voltage generator was fabricated using the conventional 9 V batteries to apply the high voltage (300-500 V) to the electrode of the parallel plate ionization chamber. The gap between two electrodes ranged from 3, 6, and 10mm. As the result of our experiment, the polarity effect was within 0.5% in photon beam and 1% to 3.5% in the electron beams. Among electron beams, 16 MeV beam, which had highest energy, showed less polarity effect than electron beams with other energies.

  • PDF

pH- and Temperature-Sensitive Bifunctional Hydrogels of N-Isopropylacrylamide and Sulfadimethoxine Monomer

  • Lee, Jin-Woo;Lee, Doo-Sung;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2003
  • pH- and temperature-sensitive bifunctional hydrogels composed of N-isopropylacrylamide (NiPAAm) and a sulfadimethoxine monomer (SDM) derived from sulfadimethoxine were prepared. These hydrogels exhibit simultaneous pH- and temperature-induced volume-phase transitions. The pH-induced volume-phase transition behavior is produced by the ionization/deionization of SDM and is very sharp. In the high pH region, the ionization of SDM induces swelling of the hydrogels. In the low pH region, the deionization of SDM induces deswelling of the hydrogels. The temperature-induced volume-phase transition behavior of the bifunctional hydrogels exhibits negative thermosensitivity because of the NiPAAm component. The hydrogels swell even at low pH as the temperature decreases. The hydrogels swell at low temperature and high pH, and deswell at high temperature and low pH. The volume of the hydrogels dependl on the balance of the swelling and deswelling produced by the two competing stimuli, pH and temperature.

An ionization Chamber for a Steel Sheet Thickness Measurement

  • Kim, Han-Soo;Park, Se-Hwa;Kim, Yong-Kyun;Ha, Jang-Ho;Cho, Seung-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An ionization chamber is still widely used in many fields by virtue of its' simple operational characteristics and the possibility of its' various shapes. A parallel type of an ionization chamber for a steel sheet thickness measurement was designed and fabricated. High pure xenon gas, which was pressurized up to 6 atm, was chosen as a filling gas to increase the current response and sensitivity for a radiation. A high pressure gas system was also constructed. The active volume and the incident window size of the fabricated ionization chamber were $30\;cm^3\;and\;12\;cm^2$, respectively. Preliminary tests with a 25 mCi $^{241}Am$ gamma-ray source and evaluation tests in a standard X-ray field were performed. The optimal operation voltage was set from the results of the collection efficiency calculation by using an experimental two-voltage method. Linearity for a variation of the steel sheet thickness, which is the most important factor for an application during a steel sheet thickness measurement, was 0.989 in this study.

Use of Graphite Plate for Homogeneous Sample Preparation in Matrix/Surface-assisted Laser Desorption and Ionization of Polypropyleneglycol and Polystyrene

  • Kim, Jeong Hwan;Gang, Wi Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.401-404
    • /
    • 2000
  • Matrix/Surface-assisted laser desorption/ionization (M/SALDI) mass spectrometry of polypropylene glycol and polystyrene, directly deposited on graphite plate, is demonstrated. Graphite plate is effective both as an en-ergy transfer medium and robu st sampling support for LDI of polymers. Mass spectra ofpolymers can be easily obtained due to homogeneous distribution on graphite surface and their ion signals are long-lived by large ef-fective desorption volume enough to investigate M/SALDI process.

A Study of Small Radiation Dosimeter by Using Microfilm and Carbon Elecrtode (마이크로필름과 탄소막 전극을 이용한 소형방사선측정기 개발에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2004
  • We developed very small parallel plate radiation detector by using our existing experience of mating radiation dosimeter and capability of analyzing characteristics of dosimeter. The radiation detector was consisted of microfilm and carbon electrode. The detector was parallel plate type of all-filled ionization chamber. The ionization chamber had been fabricated using an acrylic plate for the air cavity and carbon coated microfilm for electrical configuration. The alr gap between two electrodes was 0.48 mm. The diameters of collect electrode and guard electrode were 3.3 mm, 5 mm respectively. The diameter of high voltage electrode was 5 mm. Nominal sensitive volume of the chamber was 0.016 ㎤. The major parameters of the chamber characteristics such as leakage current, reproducibility, dose rate effect, and polarity effect were measured. The experimental results were as followings. Leakage current was 0.1 pA. Standard deviation of reproducibility was less than 0.1%. Dose rate effect was less than 1.5%. Polarity effect was less than 2.4%. These data were comparable to those of commercially available dosimetric system for QA-purpose. As the result, we found that the radiation detector consisting of the ionization chamber, microfilm and carbon electrode, was satisfactory for the purpose of the small field dosimetry in size and characteristics. In the future, We will try to refine the dosimeter for use in very small volume.

  • PDF

Preparation of Calcium Powder from Eggshell and Use of Organic Acids for Enhancement of Calcium Ionization (난각칼슘의 제조 조건 및 유기산이 칼슘의 이온화에 미치는 영향)

  • Shin, Hyung-Soon;Kim, Kong-Hwan
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.531-535
    • /
    • 1997
  • An efficient process for recovery of calcium from the eggshell was developed and some organic acids were used in an attempt to enhance the degree of calcium ionization. Eggshell membrane was readily separated from crushed eggshell based on the differences in specific gravities. The conditions which allowed most efficient membrane removal were found to be 30 rpm of speed, 30 min of residence time and 0.08 of volume fraction. It took 3 hours for the eggshell powder prepared at $1000^{\circ}C$ to reach L value of 90 with the Hausner ratio being 1.43. The calcium ion concentrations were 990, 3500, 3900 and 4200 ppm in pure water, acetic acid, citric acid and lactic acid$(0.05{\sim}3%)$ aqueous solution, respectively. The degrees of ionization of calcium-citrate-malate complex(CCM), calcium-citric acid complex(CC) and calcium malic acid complex(CM) increased by 4 to 5 times compared to eggshell calcium powder.

  • PDF

Multicomponent analysis of metabolites of low volatility in biological fluids by field ionization mass spectrometry

  • Kim, Kyoung-Rae;Anbar, Michael
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1984
  • An improved mass spectrometric method for multicomponent analysis of metabolites in urine, well-suited for clinical biochemistry, is described. The method involves solvent elution of the metabolites from an adsorbent and the concentration of the eluate on a microadsorption column. This is administered by a direct inlet probe into the ionizing source of field ionization mass spectrometry (FIMS), which yield a molecular weight profile of the metabolites. The procedure provides rapidly (within one hour) reproducible profiles from a small volume of urine. The optimization of the sampling technique and the reproducibility are discussed.

  • PDF