• 제목/요약/키워드: Volume Flow Rate

검색결과 1,180건 처리시간 0.023초

연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구 (Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature)

  • 이동조;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF

액셜 피스톤 펌프 . 모터의 피스톤 구면부 정압 윤활특성 (Hydrostatic Bearing Characteristics of Slipper in Piston Pump . Motor)

  • 박경민;김종기;오석형;송규근;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.186-193
    • /
    • 2001
  • In the high pressure state, the leakage flow rate of hydraulics is one of serious problems and the great reason to decrease the volume efficiency. In this paper, I tried to clarify tribology characteristics for the slipper hydrostatic bearing in swash plate type axial piston pumps and motors by means of experiment . I measured the leakage flow rate between swash plate and piston shoe with change the supply pressure and oil temperature at a swash plate angle of 0。 . And I also investigated the slipper pocket pressure and calculated oil film thickness for theoretical method. So. 1 have analyzed the tribology characteristics of hydrostatic bearing for leakage flow rate and oil film thickness with oil temperature and supply pressure.

  • PDF

DEVELOPMENT OF A METHOD FOR CONTROLLING GAS CONCENTRATION FOR USE IN C.A EXPERIMENTS

  • Yun, H.S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.662-669
    • /
    • 2000
  • Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure, $(length)^{-1}$ and $(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within ${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high.

  • PDF

설계유량을 변수로 한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1726-1731
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

  • PDF

설계유량을 변수로 한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate)

  • 서성진;김광용
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1332-1338
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-$\varepsilon$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

2 상 Ti3Al-xNb 계 금속간 화합물들의 초소성 특성에 미치는 상분율의 영향 (Effects of α2/β Volume Fraction on the Superplastic Deformation)

  • 김지식
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.447-456
    • /
    • 2002
  • A study has been made to investigate the boundary sliding and its accommodation mode with respect to the variation of $\alpha$$_2$/$eta$ volume fraction during superplastic deformation of two-phase Ti$_3$Al-xNb intermetallics. Step strain rate and load relaxation tests have been performed at 950, 970 and 99$0^{\circ}C$ to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that the grain matrix deformation and boundary sliding of the three intermetallics containing 21, 50 and 77% in $eta$ volume fractions are well described by the plastic deformation and viscous flow equations. Due to the equal accommodation of both $a^2$ and $\beta$ phases, the accommodation modes for fine-grained materials are in good agreement with the iso-strain rate models. The sliding resistance analyzed for the different boundaries is the lowest in the $\alpha$$_2$/$\alpha$$_2$ boundary, and increases in the order of $\alpha$$_2$/$\alpha$$_2$<< $\alpha$$_2$/$\beta$ = $\beta$/$\beta$, which plays an important role in controlling the superplasticity of the alloys with the various $\alpha$$_2$/$\beta$ phase ratio.

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정 (Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta)

  • 김문선;권대철
    • 한국자기학회지
    • /
    • 제26권4호
    • /
    • pp.142-148
    • /
    • 2016
  • 자기공명영상에서 위상대조(phase contrast; PC) 기법으로 혈류 속도와 혈류량을 정량적으로 측정하기 위해 VENC(150 cm/s)에서 숙임각의 변화에 따른 혈류 속도와 혈류량을 측정하였다. 1.5T MRI로 지원자 17명(여: 8, 남: 9, 평균연령 $57.9{\pm}15.4$)을 대상으로 non-breath holding 기법을 적용하여 상행대동맥에서 VENC(150 cm/s)로 숙임각을 $20^{\circ}$, $30^{\circ}$, $40^{\circ}$ 변화하여 측정하였다. 혈류는 average velocity, peak velocity, net forward volume, net forward volume/body surface area를 획득하였다. 상행대동맥에서 AV(average velocity)의 평균값은 숙임각 $20^{\circ}$(9.87 cm/s), $30^{\circ}$(9.6 cm/s), $40^{\circ}$(10.05 cm/s)로 측정되었다. 숙임각을 $20^{\circ}$, $30^{\circ}$, $40^{\circ}$에서 peak velocity, average velocity, net forward volume, net forward volume/body surface area는 통계적인 유의한 차이가 없었다(p > .05). 혈류속도와 혈류량 측정은 매개변수를 조정하여 적용하면 심장혈관 질환의 진단 및 치료에 중요한 정보가 되는 혈류량을 정확히 계산하고, 혈류량 측정에 관한 연구에 도움을 줄 수 있다.

Numerical Study Of H2O-Cu Nanofluid Using Lattice-Boltzmann Method

  • Taher, M.A.;Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.53-61
    • /
    • 2010
  • In the present study, a laminar natural convection flow of $H_2O$-Cu nanofluid in a two dimensional enclosure has been investigated using a thermal lattice Boltzmann approach with the Bhatnagar-Gross-Krook (BGK) model. The effect of suspended nanoparticles on the fluid flow and heat transfer process have been studied for different controlling parameters such as particle volume fraction ($\Phi$), Rayleigh number (Ra). For this investigation the Rayleigh number changes from 104 to 106 and volume fraction varied from 0 to 10% with three different particle diameters (dp), say 10 nm, 20 nm and 40 nm. It is shown that increasing the Rayleigh number (Ra) and the volume fraction of nanofluid causes an increase of the effective heat transfer rate in terms of average Nusselt number (Nu) as well as the thermal conductivity of nanofluid. On the other hand, increasing the particle diameter causes the decrease of the heat transfer rate and thermal conductivity. The result of the analysis are compared with experimental and numerical data both for pure and nanofluids and it is seen a relatively good agreement.