• Title/Summary/Keyword: Volume Flow Rate

Search Result 1,180, Processing Time 0.031 seconds

Pulmonary Function Following Open Heart Surgery -early and late postoperative changes- (개심술후 폐기능 -수술직후 및 장기간의 추이에 대하여-)

  • 이성행
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.364-374
    • /
    • 1980
  • Twenty-two patients were selected for evaluation of pre-and postoperative pulmonary function. These patients were performed open cardiac surgery with the extracorporeal circulation from March 1979 to July 1980 at the Department of Thoracic and Cardiovascular Surgery, Kyungbook National University Hospital. Patients were classified with ventricular septal defect 5 cases, atrial septal defect 5 cases, tetralogy of Fallot 5 cases, mitral stenosis 4 cases, rupture of aneurysm of sinus Valsalva 1 case, left atrial myxoma I case, and aortic insufficiency 1 case. The pulmonary function tests were performed and listed: [1] respiratory rate, tidal volume [TV], and minute volume[MV], [2] forced vital capacity [FVC] and forced expiratory volume[FEV 0.5 & FEV 1.0], [3] forced expiratory flow [FEF 200-1200 ml & FEF 25-75%]. [4] Maximal voluntary ventilation [MVV], [5] residual volume [RV] and functional residual capacity[FRC], measured by a helium dilution technique. Respiratory rate increased during the early postoperative days and tidal volume decreased significantly. These values returned to the preoperative levels after postoperative 5-6 days. Minute volume decreased slightly, but essentially unchanged. Preoperative mean values of the forced vital capacity, functional residual capacity and total lung capacity decreased [63.2%, 87.2% & 77.3% predicted, respectively], and early postoperatively these values decreased further [19.6%, 76.0% & 38.0% predicted], but later progressively increased to the preoperative levels. In residual volume, there was no decline in the preoperative mean values [100.9% predicted] and postoperatively the value rather increased [106.3-161.7% predicted]. Forced expiratory volume [FEV 0.5 & FEV 1.0] and forced expiratory flow [FEF 200-1200 ml & FEF 25-75%] also revealed significant declines in the early postoperative period. There was no significant difference in values of the spirometric pulmonary function tests, such as FEF 1.O and FEF 25-75% between successful weaning group [17 cases] extubated within 24 hrs post-operatively and unsuccessful weaning group [5 cases] extubated beyond 24 hrs. Static compliance and airway resistance measured for the two cases during assisted ventilation, however, any information was not obtained. Long term follow-up pulmonary function studies were carried out for 8 cases in 9 months post-operatively. All of the results returned to the pre-operative or to normal predicted levels except FVC, FEV 1.0, and FEF 25-75% those showed minimal declines compared to the pre-operative figures.

  • PDF

Evaluation of the Charcoal Tube Sampling Method for Carbon Disulfide in Air (활성탄관법을 이용한 공기중 이황화탄소 농도 측정법에 관한 연구)

  • Lee, Na Roo;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.22-36
    • /
    • 1993
  • This study was conducted to evaluate the charcoal tube sampling method for carbon disulfide in the air. Breakthrough was investigated according to flow rate, sampling time and air volume. Also the storage stability by storage method and time was investigated. The results are summarized as follows. 1. The samples stored at room temperature($28.2^{\circ}C$), refrigerator($3.8^{\circ}C$) and freezer($-15.6^{\circ}C$) were analyzed every week to five weeks. At one week storage at room temperature, 3.5% of $CS_2$ in the front section of the charcoal tube migrated into the back section and 57.7% at five weeks. The amount of $CS_2$ in the back section of the charcoal increased continuously by storage time. Migration of $CS_2$ was slow at refrigerator, and stopped occur at freezer. Recovery rate $CS_2$ was 52-82% at room temperature and 92-101% at refrigerator, based on the amount at freezer as a reference value. Thus loss was observed at room temperature. 2. When 6-48 L of fresh air were passed through tubes with spiked amounts of 0.379 and 0.759mg sample, the amounts of $CS_2$ in the back section of charcoal were 5.7-132.4 and 0-92% of the amount in the front section, respectively. The total recovery rates of$CS_2$ from 0.379 and 0.759mg spiked sample were 35.7-101.0% and 9l.3-100.1%, respectively. $CS_2$ loss was observed in 0.379mg spiked sample, but not in 0.759mg spiked sample. In the spiked samples, the amount of $CS_2$ in the back section of charcoal was not affected by flow rate when the air volume was controlled. The amount of $CS_2$ in the back section of charcoal increased over sampling time. And the faster the flow rate, the more the migration amount when the sampling time was the same. 3. A known concentration, 10 ppm of $CS_2$, was produced in a 200 L Tedlar bag. When the air volume was 24, 36, 48 L, breakthrough was 5.8, 16.9, 47.4%, respectively. The sampling flow rate of 0.05, 0.1, 0.2 Lpm did not change the breakthrough rate. Breakthrough increased over sampling time. And the faster the flow rate, the more the breakthrough, when the sampling time was the same.

  • PDF

Study on fluid flow characteristics of aquarium for optimum environment (최적 양식환경을 위한 수조식 양식장내의 유동특성에 관한 연구)

  • 정효민;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.108-117
    • /
    • 1998
  • This study was performed to analyze the fluid flow characteristics and the temperature distribution of the aquarium for fish breeding. In this study, the finite volume method and turbulence k-$\varepsilon$ model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The calculation parameters are the circulating flow rate and the basin depth, and the experiments were carried out for the water flow visualization This numerical analysis gives reasonable velocity distributions in good agreement with the experimental data. As the results of the three dimmentional simulations, the sectional mean velocity increased as the sectional mean temperature increases for constant basin depth, and the mean velocity increased more rapidly for small basin depth than that of large basin depth, The mean velocity and temperature can be expressed as the function of the circulating flow rates and the basin depth.

  • PDF

Thermal Optimization of a Straight Fin Heat Sink with Bypass Flow (바이패스가 있는 히트 싱크의 열성능 최적화)

  • Kim, Jin-Wook;Kim, Sang-Hoon;Kim, Joong-Nyon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • This experimental study investigated the effect of tip clearance and bypass flow on the cooling performance of a straight fin heat sink. Both the horizontal and vertical directions of the bypass flow were studied by using a mass flow controller and test sections. The thermal resistance of a heat sink was obtained to elucidate the response of the cooling performance to tip clearance and bypass flow. The thermal resistance of a straight fin heat sink gradually increases with increasing tip clearance. A flow guide unit was employed to reduce the bypass flow. An optimal distance from the leading edge of the heat sink to the flow guide unit was found for the fixed volume flow rate. The contribution of the flow guide unit to the thermal performance of a heat sink increases with increasing volume flow rate.

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

RENAL REGULATION OF UREA EXCRETION DURING UREA INFUSION IN ACUTE HEAT EXPOSED BUFFALOES

  • Chaiyabutr, N.;Buranakarl, C.;Loypetjra, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.81-90
    • /
    • 1992
  • Five buffaloes kept in normal ambient temperature ($30^{\circ}C$) showed no significant changes in the heart rate, respiratory rate, packed cell volume, plasma constituents and renal hemodymics during intravenous infusion of urea for 4 h. The rate of urine flow, fractional urea excretion, urinary potassium excretion and osmolar clearance significantly decreased while the renal urea reabsorption markedly increased during urea infusion. The decrease of fractional potassium excretion was concomitant with the reduction of the rate of urine flow and urine pH. In animals exposed to heat ($40^{\circ}C$) the rectal temperature heart rate and respiratory rate significantly increased while no significant changes in GFR and ERPF were observed. An intravenous infusion of urea in heat exposed animals caused the reduction of the rate of urine flow with no changes in renal urea reabsorption, urine pH and fractional electrolyte excretions. During heat exposure, there were marked increases in concentrations of total plasma protein and plasma creatinine whereas plasma inorganic phosphorus concentration significantly decreased. It is concluded that an increase in renal urea reabsorption during urea infusion in buffaloes kept in normal ambient temperature depends on the rate of urine flow which affect by an osmotic diuretic effect of electrolytes. The limitation of renal urea reabsorption in heat stressed animals would be attributed to an increases in either plasma pool size of nitrogenous substance or body metabolism.

Mean Value of Aerodynamic Study in Normal Korean (음성검사 중 공기역학적 검사에서 한국인의 정상 평균치)

  • 서장수;송시연;권오철;김준우;이희경;정옥란
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Recently, many people suffering from voice color change visit otolaryngologist. There is no specific data which can be evaluated objectively for voice color change in korean. In aerodynamic study, maximum phonation time, mean air flow rate, phonatory flow volume and subglottal pressure were tested by using Aerophone II voice function analyzer in korean. 112 male and 122 female aged from 10 to 69 years were randomly selected. Maximum phonation time was 20.8${\pm}$6.4sec in male and 17.2${\pm}$4.1sec in female. Mean air flow rate was 167.1${\pm}$61.4ml/sec. in male and 129.6${\pm}$49.3ml/sec in female. Phonatory flow volume was 3184.5${\pm}$646.0ml in male and 2122.1${\pm}$670.5ml in female. Subglottal pressure was 4.1${\pm}$1.8 cmH2O in male and 3.5${\pm}$1.4cm $H_2O$ in female. There was no statistically significant difference among age groups in all above results.

  • PDF

A Study on the Cooling Characteristics of Cooling-Jacket in High-Speed Spindle according to the Flow Rate (고속 주축계의 자켓의 유량 변화에 따른 냉각 특성)

  • 김태원;김수태;최대봉;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.332-336
    • /
    • 2000
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. For the analysis, three dimensional model for the cooling jacket is built by using finite volume method. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat flux on the boundary. Numerical results show that flow rate are important factors for cooling characteristics of cooling jacket.

  • PDF

Assessment of Numerical Optimization Algorithms in Design of Low-Noise Axial-Flow Fan (축류송풍기의 저소음 설계에서 수치최적화기법들의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1335-1342
    • /
    • 2000
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations are used as governing equations, and standard k- ${\varepsilon}$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Two variables concerning sweep angle distribution are selected as the design variables. Performance of the final fan designed by the optimization was tested experimentally.

Numerical Analysis of Swirling Turbulent Flow in a Pipe (원관내 난류 선회류의 수치해석)

  • Lee, D.W.;Kim, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.396-405
    • /
    • 1995
  • Numerical calculations are carried out for the swirling turbulent flow in a pipe. Calculations are made for the flow with swirl parameter of 2.25 and the Reynolds number of 24,300. The turbulence closure models used in these calculations are two different types of Reynolds stress model, and the results are compared with those of $k-{\varepsilon}$ model and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-pressure correction. The computational results show that GL model gives the results better than those of SSG model in the predictions of velocity and stress components.

  • PDF