• 제목/요약/키워드: Volume Electrical conductivity

검색결과 169건 처리시간 0.027초

전도성 구리충전제/에폭시수지 복합체의 전기적 특성 (Electrical Properties of Conductive Copper Filler/Epoxy Resin Composites)

  • 이정은;박영희;오승민;임덕점;오대희
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.472-479
    • /
    • 2013
  • The conductive polymer composites recently became increasingly to many fields of industry due to their electrical properties. To understand these properties of composites, electrical properties were measured and were studied relatively. Electrical conductivity measurements showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in composites made of a conductive filler and an insulating matrix. It has been showed both experimentally and theoretically that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. This paper was to study epoxy resin filled with copper. The experiment was made with vehicle such as epoxy resin replenished with copper powder and the study about their practical use was performed in order to apply to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 3.065~13.325 in using copper powder. The weight loss of conductive composites happened from $350^{\circ}C{\sim}470^{\circ}C$.

Preparation and applications of electrically conducting fabrics

  • Lee, Jun-Young;Jinsoo Joo;Lim, Jeong-Ok
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.25-26
    • /
    • 2003
  • Electrically conducting polymers such as polypyrrole(PPy) or poly(3,4-ethylene dioxythiophene)(PEDOT) were sequentially polymerized chemically and electrochemically on various kinds of woven fabrics, giving rise to the fabrics with high electrical conductivity. The specific volume resistivity of the fabric prepared in this study was extremely low as 0.2 $\Omega$-cm. We figured out the electrically conducting fabrics were practically useful for many applications such as an EMI shielding material, a flexible surface heating element or a strain sensor for large deformation.

  • PDF

Effect of Glass Additions on the Adhesion and Electrical Conductivity of Photoimageable Silver Paste

  • Lee, Eun-Heay;Heo, Yu-Jin;Kim, Hyo-Tae;Kim, Jong-Hee
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.63-70
    • /
    • 2011
  • Anorthite forming glass frits in amounts up to 25 vol% of the silver powder were added to improve the adhesion between the conductor pattern formed by thick film photoimageable process and the low temperature co-fired ceramics (LTCC) substrate. The sheet resistance of the conductor pattern was raised from 0.13 ${\Omega}/{\square}$ to 2.25 ${\Omega}/{\square}$ as the volume percentage of glass frit increased up to 25 vol%. The adhesion strength was improved with this glass frit increase, but it decreased when the glass content exceeded 20 vol% which are possibly attributed to the liquid pool effect and the reduced fracture toughness in the interface between conductor and LTCC layer. The shrinkage of the width of the conductor pattern decreased with the addition of glass contents.

Synthesis of a new class of carbon nanomaterials by solution plasma processing for use as air cathodes in Li-Air batteries

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.833-837
    • /
    • 2015
  • Li-air batteries have a promising future for because of their high energy density, which could theoretically be equal to that of gasoline. However, substantial Li-air cell performance limitations exist, which are related to the air cathode. The cell discharge products are deposited on the surfaces of the porous carbon materials in the air electrode, which blocks oxygen from diffusing to the reaction sites. Hence, the real capacity of a Li-air battery is determined by the carbon air electrode, especially by the pore volume available for the deposition of the discharged products. In this study, a simple and fast method is reported for the large-scale synthesis of carbon nanoballs (CNBs) consisting of a highly mesoporous structure for Li-air battery cathodes. The CNBs were synthesized by the solution plasma process from benzene solution, without the need for a graphite electrode for carbon growth. The CNBs so formed were then annealed to improve their electrical conductivity. Structural characterization revealed that the CNBs exhibited both an pore structure and high conductivity.

CM-Magnetite계(系) 도전성(導電性)고무의 제조연구(製造硏究) (The Study on the Manufacturing of CM-Magnetite Conducting Rubber)

  • 박근식;최세영
    • Elastomers and Composites
    • /
    • 제29권2호
    • /
    • pp.113-120
    • /
    • 1994
  • The vulcanization characteristics, physical and electrical properties have been measured for magnetite-loaded CM compounds containing various concentration of magnetite. Samples of the various concentration of magnetite are characterized by oscillating disk rheometer, mooney viscometer, tensometer and resistance meter. The morphology and dispersion of magnetite are analyzed by scanning electron microscope(SEM). The results obtained are as follows : 1. The CM compound without magnetite shows plain curve, while the CM compounds containing magnetite show short curves. 2. The maximum volume of magnetite is 600 phr in the CM compounds. The magnetite of 30 to 150 phr of magnetite act as reinforcement agents and the 50 phr magnetite shows maximum tensile strength. 3. The electric conductivity is mostly influenced by the conditions of temperature, compacting pressure, and magnetite orientation. Further efforts should be made to develop a new design in various electric conductivity fillers for the most efficient and applicable rubber products.

  • PDF

교통량별 가로변 토양특성 및 타이어 마모 입자(TWPs) 분석 (Analysis of Roadside Soil Characteristics and Tire Wear Particles(TWPs) According to Traffic Volume)

  • 이선영;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제32권9호
    • /
    • pp.627-634
    • /
    • 2023
  • Tire wear particles(TWPs), regarded as a microplastic, is generated in significant quantities each year and exist in various spaces and have a negative impact on the surrounding environment. Particularly, roadside environments fall within the direct influence of TWPs, necessitating proactive investigation for contamination management and response. Therefore, this study aimed to investigate the soil acidity and electrical conductivity(EC) and TWPs in the roadside soil of six sites based on traffic volume. The analysis revealed that the soil in all sites exhibited subacidity, and there were no significant differences in EC. Microscopic and FT-IR analysis revealed the presence of microscopic particles in soil samples that exhibited common visual characteristics of TWPs. In the road with the highest traffic volume, 48,300 TWPs were detected per unit area. Furthermore, a proportional relationship between traffic volume and TWPs particles was established. However, influences other than traffic volume on TWPs particle count within the soil were observed. Therefore, for the management of TWPs contaminated roadside soil, a proactive response is necessary in areas with high traffic volumes. However, in order to effectively address the factors contributing to the generation and dispersion of TWPs, further research is required with a multidimensional approach.

가교 입자 첨가가 폴리스티렌/탄소나노튜브 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향 (Effect of Adding Crosslinked Particles on Rheological and Electrical Properties of Polystyrene/Carbon Nanotube Nanocomposites)

  • 염효열;나효열;이성재
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.767-773
    • /
    • 2014
  • 응고 침전법으로 제조한 폴리스티렌(PS)/탄소나노튜브(CNT) 나노복합재료의 유변물성 및 전기적 물성을 고찰하였다. CNT의 분산성 향상을 위해 도입하는 일반적인 방법인 화학적 개질이나 계면활성제 도포 방법은 CNT의 고유 물성을 저하시킬 수 있다. 이를 방지하기 위해 본 연구에서는 PS와 CNT를 dimethylformamide에 분산시킨 후 증류수에 응고 침전시키는 방법으로 나노복합재료를 제조하였다. 응고 침전법에 의한 CNT의 분산은 매우 효과적이어서 제조한 나노복합재료는 우수한 전기 전도도를 나타내었다. 또한 PS 매트릭스에 poly(styrene-co-divinylbenzene) 가교 입자를 첨가하여 가교 입자 첨가가 유변물성과 전기적 물성에 미치는 영향을 고찰하였다. 가교 입자를 첨가한 나노복합재료의 경우 CNT의 전기적 임계점이 0.25 wt%로 감소되었고 전기 전도도는 더욱 증가하였다. 이는 가교입자가 차지하는 부피 내의 CNT가 전기적 통로를 형성하는데 추가적으로 기여했기 때문으로 판단된다.

HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성 (Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition)

  • 박승일;지형용;김명준;김근주
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

Fe3O4 Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries

  • Lee, Kangsoo;Shin, Seo Yoon;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.376-380
    • /
    • 2016
  • A composite electrode made of iron oxide nanoparticles/multi-wall carbon nanotube (iNPs/M) delivers high specific capacity and cycle durability. At a rate of $200mAg^{-1}$, the electrode shows a high discharge capacity of ${\sim}664mAhg^{-1}$ after 100 cycles, which is ~ 70% of the theoretical capacity of $Fe_3O_4$. Carbon black, carbon nanotube, and graphene as anode materials have been explored to improve the electrical conductivity and cycle stability in Li ion batteries. Herein, iron oxide nanoparticles on acid treated MWCNTs as a conductive platform are combined to enhance the drawbacks of $Fe_3O_4$ such as low electrical conductivity and volume expansion during the alloying/dealloying process. Enhanced performance was achieved due to a synergistic effect between electrically 3D networks of conductive MWCNTs and the high Li ion storage ability of $Fe_3O_4$ nanoparticles (iNPs).

방사성폐기물 유리화 공정 및 유리고화체 특성 (Characteristics of Vitrification Process and Vitrified Form for Radioactive Waste)

  • Kim, Cheon-Woo;Kim, Ji-Yean;ChoI, Jong-Rak;Ji, Pyung-Kook;Park, Jong-Kil;Shin, Sang-Woon;Ha, Jong-Hyun;Song, Myung-Jae
    • 방사성폐기물학회지
    • /
    • 제2권3호
    • /
    • pp.175-180
    • /
    • 2004
  • In order to vitrify the combustible dry active waste (DAW) generated from Korean Nuclear Power Plants, a glass formulation development based on waste composition was performed. A borosilicate glass, DG-2, was formulated to vitrify the DAW in an induction cold crucible melter (CCM). The processability, product performance, and volume reduction effect of the candidate glass were evaluated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product of the glass product such as chemical durability, phase stability, and density was satisfactory. The vitrification process using the candidate glass was also evaluated assuming that it was operated as economically as possible.

  • PDF