• Title/Summary/Keyword: Volume Electrical conductivity

Search Result 169, Processing Time 0.043 seconds

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

Use of Paper Mill Sludge and Briquet Ash as Root Zone Soil Mixtures for Thrfgrass Culture (잔디상토로서의 제지스럿지와 연탄재 이용에 관한 연구)

  • 구자영;김태일;안주원
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.11-22
    • /
    • 1992
  • To determine the use of waste materials as root zone soil mixtures for turfgrass culture, the effects of paper mill sludge and briquet ash on physical and chemical properties of soil and growth of turfgrasses were examined. Three turfgrass species of zoysiagrass(Zoysia japonicaSteud.). kentycky bluegrass(Poa pratensis L. 'Ram I') and creeping bentgrass(Agrostis panistris Huds 'Persucross') were cultured in 32cm diameter plastic pots containing various soil mixtures. The basic ingredients used for mixtures included sand(SD), field soil(SL), paper mill sludge(PS), sphagnum peat moss(PM) and briquet ash(BA). Seven combinations using these ingreients were mixed in different percentage by volume as follows: SD+SL+PM(80:10.10), SH+SL+PS(80:10:10), SD-PM(80:20), SD+PS (80:20), SD+BA(80:20), SD+BA+PM(60:20:20) and SD+BA+PS(60:20:20). 1. Paper mill sludge showed pH of 6.6, more than 30% of organic matter content, and higher concentrations of total N, P, k, Ca, Mg and CEC. Bulk density, fild moisture capacity and electrical conductivity of soil mixtures were increased by the comimation of 10~20% PS by volume. 2. Briquet ash showed pH of 8.0, and higher levels of P, k, Ca and Mg than those of field soiks. Bulk density, field moisture capacity and hardenss of soil mixtures were increased but vertical water flow rate and electrical conductivity were decreased by the combination of 20% BA by volume. 3. Phytotoxic effects of PS and BA on growth of turfgrasses were not found. Shoot growth of all three species was higher in soil combination of SD+BA+PS than that of SD+SL+PM added with fertilizer. However, root growth was better in soil mixtures combined with PM. Soil mixtureomposed of 60% SD, 20% BA and 20% PS by volume was most effective on growth of all three species. 4. Paper mill sludge resulted in higher N level in the leaf tissue. The contents of heavy metals such as Cd and Ph did not vary significantly among soil mixtures and species. However, the Mn level was 2~3 times higher in plants growh in mixtures containing PM compared with others, and especially it was higher in creeping bentgrass than other species.

  • PDF

Effective Thermal Conductivities of Fiber-Reinforce Composites Using a Thermal-Electrical Analogy (열-전기 유사성을 이용한 복합재료의 열전도도 예측)

  • 조영준;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.81-84
    • /
    • 2002
  • An approach for predicting the effective thermal conductivities of fiber-reinforce composite has been developed based on a thermal-electrical analogy. The unit cell of the composite laminate is divided into regular volume elements and the material properties have been given to each element. By constructing the series-parallel thermal resistance network, the thermal conductivities of composite both in-plane and out-of-plane direction have been predicted. Graphite/Epoxy composite is used for a balanced plain-weave composite laminate. By comparing the predicted results and the previous works, good agreement has been found.

  • PDF

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

Impedance Properties of Lithium Sulfur Batteries (리튬황전지의 임피던스 특성)

  • Jin, Bo;Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.444-447
    • /
    • 2002
  • The Jig cells are fabricated in the drying room, and consisted of elemental sulfur used as a cathode active material, lithium metal used as a anode material and 1M $LiCF_{3}SO_{3}$ dissolved in TG (Tetraglyme)/DIOX (1,3-Dioxolane) used as a electrolyte. The four kinds of electrolytes with different content of TG and DIOX are prepared. The electrochemical properties of the foregoing electrolytes-based lithium sulfur batteries are analyzed by AC impedance experiments. The conductivity of four different electrolytes is investigated. The conductivity of electrolyte [1M $LiCF_3SO_3$ dissolved in TG/DIOX (50:50, vol.)] is higher than that of other three kinds of electrolytes with different volume ratio (70:30, 30:70) and single solvent (TG).

  • PDF

Preparation of High-Efficient Oil-based Nanofluids and It's Application to the Transformer (고효율 나노절연유 제조 및 변압기에의 적용)

  • Yoo, Hyun-Sung;Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.31-32
    • /
    • 2007
  • Oil-based nanofluids are prepared by dispersing spherical and fiber-shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes are compared in this investigation. It is obvious that the combination of nanoparticle, surfactant and surface modification process is very important for the dispersity of nanofluids. For ($Al_2O_3$+AIN) particles with 1% volume fraction, the enhancement of thermal conductivity and convective heat transfer coefficient is nearly 11% and 30%, respectively, compared to pure transformer oil. The cooling effect of ($Al_2O_3$+AlN)-oil nanofluids on the heating element and oil itself is confirmed by a natural convection test using a prototype transformer.

  • PDF

Preparation and Heat Transfer Properties of Nanoparticle-in-Transformer Oil Dispersions as Advanced Energy-efficient Coolants (고효율 냉각용 나노분말/절연유 분산액의 제조 및 열전달특성)

  • Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.81-82
    • /
    • 2006
  • The purposes of the present study are to produce a high thermal efficient of oil-based nanofluids which can be used as ultra-high voltage transformer oil, and to investigate their thermal and physical properties under static and dynamic conditions. Three kinds of nanofluids are prepared by dispersing $Al_2O_3$ or AlN nanoparticles in transformer oil. The thermal conductivities of the nanoparticles-oil mixtures increase with temperature, particle volume concentration and thermal conductivity of solid particle itself. It was quite important to eliminate $H_2O$ as byproducts of esterification and excess oleic acid which did not form stable chemical bonds with powder surface to get high dispersion stability.

  • PDF

Analysis on Wearing Characteristics of Main Wearing Slider for Pantograph According to Precipitation (강수의 영향에 따른 Pantograph 주습판의 마모특성 분석)

  • Kim, Kyung-Seob;Kim, Kwan-Soo;Cho, Kwan-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.994-999
    • /
    • 2011
  • The main wearing slider of pantograph is a difference which is considerable to wear phenomenon according to material properties. Especially, Cu-type wearing slider suddenly occurs the abnormal wear by precipitation, this threatens the travelling safety of the train. The abnormal wear by precipitation and arc influences are main factor decided to life time of Cu-type wearing slider and contact wire. Consequently, the application of the main wearing slider with wear resisting capacity, electrical conductivity, resistance arc and lubrication is demanded. In this paper through tribologic approach, overcame abnormal phenomenon of the Cu-type wearing slider by the precipitation and for the economic efficient augmentation by durability improvement and the travelling safety were accomplished. The Cu-type wearing slider which has excellent electric conductivity and arc characteristic but it occurs the normal and abnormal wear phenomenon according the precipitation which changes, respectively. Consequently, this phenomenon grasps fixed quantity according to precipitation, a mileage and wear volume then Fe-type wearing slider compared and analyzed.

  • PDF

Prediction of Thermal Conductivity of Spatially Reinforced Composites (다방향으로 입체 보강된 복합재의 열전도계수 예측)

  • 이상의;유재석;김천곤;홍창선;김광수
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.57-68
    • /
    • 2001
  • This paper predicted the thermal conductivity of spatially reinforced composites(SRC) by applying the volume averaging method and the thermal resistance method. The former method employs existing micro-mechanical theories and conventional transformation rules to obtain the constitutive relations for the unit cells of the composites and the latter one uses the analogy between the diffusion of heat and electrical charge. To verify the theoretical predictions, the thermal conductivity of 4-D(dimensional) SRC was examined experimentally. The comparison of the numerical results with those measured by the experiment showed good agreement.

  • PDF

Electromagnetic interference shielding materials using carbon nanotubes (탄소나노튜브를 이용한 전자파 차폐재)

  • 윤호규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.33-36
    • /
    • 2003
  • AC and DC conductivity of the MWNT(Multi walled nanotubes)/polyurethane composites were investigated with respect to the various oxidative conditions, where these means acid concentration, treatment temperature, and treatment time. We suppose that the conditions of oxidation of the MWNTS have a certain influence on the degree of functionalization, damages, and dispersion of the MWNT themselves. Futhermore, the electrical properties of the resulting composites strongly depend on the oxidative conditions of MWNTS. The conductivity of the composites produced by using the optimal condition was measured as a function of frequency with volume content of MWNTS. These experimental results were analyzed using percolation theory Electromagnetic interference shielding effectiveness (SE) of the mixtures of polyurethane (PU), optimized MWNTs, and silver (Ag) is measured in the frequency range from 10 MHz to 6 ㎓ by using ASTM D4935-89. The measured SEs of the mixtures could be controlled from about 55 dB to 85 dB with the compositions of Ag/MWNT and compounding methods(C1, C2).

  • PDF