• Title/Summary/Keyword: Volume Duration

Search Result 472, Processing Time 0.024 seconds

Evaluation of Sampling Methodology for the Measurement of Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향족 탄화수소의 측정을 위한 시료포집방법의 비교평가)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.43-62
    • /
    • 1998
  • This study was carried out to investigate the influence of different sampling methods on the measured concentrations of polycyclic aromatic hydrocarbons (PAH) both in the vapor and particulate phases, and to evaluate the effects of ambient temperature and sampling duration on the losses of PAH associated with particle samples due to volatilization. The experimental protocol of this study is consisted of two parts. The first part is related to the comparison of PAH concentrations measured by 4 different sampling systems, each of which involves different sampling principles for comparison purposes, including a medium-volume sampler with XAD-2 adsorbent, a high-volume sampler with polyurethane foam (PUF), two identical low-volume samplers: one with XAD-2 and the other with PUF, respectively. The second part of this study is to quantitatively estimate the losses of particulate PAH samples by volatilization during sampling, using two identical low-volume samplers: one was used for changing the filters every 3 hrs, 6 hrs, 12 hrs, and 24 hrs sampling, while the other was maintained for continuous 48 hours sampling without changing the filter. The concentrations of volatile PAH including 2-3 rings appeared to be significantly affected by the type of adsorbent. Measured levels of these lower-molecular weight PAH by XAD-2 adsorbent were much higher than those by PUF for both high-volume and low-volume sampling. PUF was found to give rise to unknown components that interfered with the PAH analysis, even after extensive clean-up. In addition, the retention efficiency of PUF for lower molecular weight PAH was subject to a large variation, being significantly influenced by sampling conditions such as ambient temperature. However, the effect of sampling methods with different adsorbents on the measured levels of semi-volatile compounds including 4 rings PAH such as fluoranthene, pyrene, BaA and chrysene, was not so much significant as more volatile PAH compounds. It was also clear from this study that volatilization losses of the semi-volatile PAH collected on the filters were inevitably occurred during prolonged sampling, and hence the results obtained from conventional sampling methods may not be expected to yield an accurate distribution of PAH between the vapor and particulate phases.

  • PDF

An Analysis of Influence Factors for the Remodeling Project Management of Apartment Buildings -Focused on Construction Phase- (공동주택 리모델링 사업관리를 위한 영향요인 분석 -시공단계를 중심으로-)

  • Shim, Gyu-Jung;Seo, Jong-Min;Na, Young-Ju;Song, Yong-Sik;Kim, Sun-Kuk
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • Housing development, particularly apartment buildings, has been increasingly growing due to the construction promotion policy of the government since the 1980s. However such a volume-oriented policy results in unfavorable side effect of substandard quality and early deterioration in line with the expansion in volume. As part of measures to deal with the problems, rebuilding and remodeling have surfaced as alternative recently. Remodeling is expected to create the more benefits, compared to the rebuilding, in cost, efficiency and duration. To come up with the solution to such a challenge, it's necessary to analyze the influence factors of remodeling. Hence, the study was intended to compare the remodeling in the aspect of influence factors. The results of this study is expected to the propose of effectual management factors of the remodeling construction.

A Study on the Reliability of Observational Settlement Analysis Using Data Mining (데이터마이닝을 이용한 관측적 침하해석의 신뢰성 연구)

  • 우철웅;장병욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.183-193
    • /
    • 2003
  • Most construction works on the soft ground adopt instrumentation to manage settlement and stability of the embankment. The rapid progress of the information technologies and the digital data acquisition on the soft ground instrumentation has led to the fast-growing amount of data. Although valuable information about the behaviour of the soft ground may be hiding behind the data, most of the data are used restrictedly only for the management of settlement and stability. One of the critical issues on soft ground instrumentation is the long-term settlement prediction. Some observational settlement analysis methods are used for this purpose. But the reliability of the analysis results is remained in vague. The knowledge could be discovered from a large volume of experiences on the observational settlement analysis. In this article, we present a database to store settlement records and data mining procedure. A large volume of knowledge about observational settlement prediction were collected from the database by applying the filtering algorithm and knowledge discovery algorithm. Statistical analysis revealed that the reliability of observational settlement analysis depends on stay duration and estimated degree of consolidation.

Design criteria of wind barriers for traffic -Part 2: decision making process

  • Kim, Dong Hyawn;Kwon, Soon-Duck;Lee, Il Keun;Jo, Byung Wan
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • This study presents a decision making process for installation of wind barrier which is used to reduce the wind speed applied to running vehicles on expressway. To determine whether it is needed to install wind barrier or not, cost and benefit from wind barrier are calculated during lifetime. In obtaining car accidental risk, probabilistic distribution of wind speed, daily traffic volume, mixture ratio in the volume, and duration time for wind speed range are considered. It is recommended to install wind barrier if benefit from the barrier installation exceed construction cost. In the numerical examples, case studies were shown for risk and benefit calculation and main risky regions on Korean highway were all evaluated to identify the number of installation sites.

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Simulation of a power cycle for a single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 동력사이클의 시뮬레이션)

  • 조양수;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-61
    • /
    • 1983
  • In this paper the simulation of a thermodynamic power cycle for a 4-stroke, single-cylinder, spark-ignition engine was studied. In this simulation the cylinder volume was restricted to two zones, a burnt and an unburnt zone, and the convective heat transfer from cylinder contents to surroundings was considered. The chemical species in burnt gas considered was 12 species including H$_{2}$O, H$_{2}$, OH, H, N$_{2}$, NO, N, CO$_{2}$, CO, $O_{2}$, O and Ar. Using this model, computer program for compression, ignition and expansion processes was composed and pressure, temperature and composition of cylinder gas at each crank angle were computed. The composition of CO$_{2}$, CO, $O_{2}$ in the burnt gas when exhaust valve opens, the maximum temperature, the maximum flame speed and the combustion duration were also computed as a function of equivalence ratio. The relation between burnt mass fraction and burnt volume fraction was also computed.

  • PDF

Changes in Right Ventricular Volume, Volume Load, and Function Measured with Cardiac Computed Tomography over the Entire Time Course of Tetralogy of Fallot

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.956-966
    • /
    • 2019
  • Objective: To characterize the changes in right ventricular (RV) volume, volume load, and function measured with cardiac computed tomography (CT) over the entire time course of tetralogy of Fallot (TOF). Materials and Methods: In 374 patients with TOF, the ventricular volume, ventricular function, and RV volume load were measured with cardiac CT preoperatively (stage 1), after palliative operation (stage 2), after total surgical repair (stage 3), or after pulmonary valve replacement (PVR) (stage 4). The CT-measured variables were compared among the four stages. After total surgical repair, the postoperative duration (POD) and the CT-measured variables were correlated with each other. In addition, the demographic and CT-measured variables in the early postoperative groups were compared with those in the late postoperative and the preoperative group. Results: Significantly different CT-based measures were found between stages 1 and 3 (indexed RV end-diastolic volume [EDV], 63.6 ± 15.2 mL/m2 vs. 147.0 ± 38.5 mL/m2 and indexed stroke volume (SV) difference, 7.7 ± 10.3 mL/m2 vs. 32.2 ± 16.4 mL/m2; p < 0.001), and between stages 2 and 3 (indexed RV EDV, 72.4 ± 19.7 mL/m2 vs. 147.0 ± 38.5 mL/m2 and indexed SV difference, 5.7 ± 13.1 mL/m2 vs. 32.2 ± 16.4 mL/m2; p < 0.001). After PVR, the effect of RV volume load (i.e., indexed SV difference) was reduced from 32.2 mL/m2 to 1.7 mL/m2. Positive (0.2 to 0.8) or negative (-0.2 to -0.4) correlations were found among the CT-based measures except between the RV ejection fraction (EF) and the RV volume load parameters. With increasing POD, an early rapid increase was followed by a slow increase and a plateau in the indexed ventricular volumes and the RV volume load parameters. Compared with the preoperative data, larger ventricular volumes and lower EFs were observed in the early postoperative period. Conclusion: Cardiac CT can be used to characterize RV volume, volume load, and function over the entire time course of TOF.

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber (가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

Effect of the Configuration of Plasma Jet Plug on Combustion Characteristics in a Constant Volume Vessel (플라즈마 제트 플러그의 형상이 정적연소기내 연소특성에 미치는 영향)

  • Kim, Munheon;Yoo, Hoseon;Oh, Byungjin;Park, Jungseo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.593-602
    • /
    • 1999
  • This paper presents combustion characteristics of LPG-air mixture ignited by the plasma jet in a cylindrical vessel with constant volume, in which our focus is placed on the multi-hole plug configuration. Four types of the plug configuration depending on the number of orifice and the arranged angle are considered, along with two cases of conventional spark ignition for comparison. Not only the flame propagation is photographed at intervals, but the pressure in the combustion chamber is also recorded through the entire combustion process. The results show that the plasma jet ignition enhances the overall combustion rate remarkably in comparison to the spark ignition by generating irregular flame front and penetrating through the unburned mixture. The combustion enhancement rate agrees favorably with the available data, which supports the validity of our experiment. Synthetically estimating, the two-hole sixty-degree plug appears to be the most desirable, in that the maximum pressure as well as the combustion duration is less affected by the sub-energy level than the others. It is also deduced that there may exist an optimal plug configuration capable of rapid combustion for a specific combustion chamber.