• Title/Summary/Keyword: Volume Deformation

Search Result 803, Processing Time 0.02 seconds

Treatment Margin Assessment using Mega-Voltage Computed Tomography of a Tomotherapy Unit in the Radiotherapy of a Liver Tumor (간종양 방사선치료 시 토모테라피 메가볼트 CT를 이용한 치료 여백 평가)

  • You, Sei-Hwan;Seong, Jin-Sil;Lee, Ik-Jae;Koom, Woong-Sub;Jeon, Byeong-Chul
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.280-288
    • /
    • 2008
  • Purpose: To identify the inter-fractional shift pattern and to assess an adequate treatment margin in the radiotherapy of a liver tumor using mega-voltage computed tomography (MVCT) of a tomotherapy unit. Materials and Methods: Twenty-six patients were treated for liver tumors by tomotherapy from April 2006 to August 2007. The MVCT images of each patient were analyzed from the $1^{st}$ to the $10^{th}$ fraction for the assessment of the daily liver shift by four groups based on Couinard's proposal. Daily setup errors were corrected by bony landmarks as a prerequisite. Subsequently, the anterior-, posterior-, right-, and left shifts of the liver edges were measured by maximum linear discrepancies between the kilo-voltage computed tomography (KVCT) image and MVCT image. All data were set in the 2-dimensional right angle coordinate system of the transverse section of each patient's body. Results: The liver boundary shift had different patterns for each group. In group II (segment 2, 3, and 4), the anterior mean shift was $2.80{\pm}1.73\;mm$ outwards, while the left mean shift was $2.23{\pm}1.37\;mm$ inwards. In group IV (segment 7 and 8), the anterior-, posterior-, right-, and left mean shifts were $0.15{\pm}3.93\;mm$ inwards, $3.15{\pm}6.58\;mm$ inwards, $0.60{\pm}3.58\;mm$ inwards, and $4.50{\pm}5.35\;mm$ inwards, respectively. The reduced volume in group II after MVCT reassessment might be a consequence of stomach toxicity. Conclusion: Inter-fractional liver shifts of each group based on Couinard's proposal were somewhat systematic despite certain variations observed in each patient. The geometrical deformation of the liver by respiratory movement can cause shrinkage in the left margins of liver. We recommend a more sophisticated approach in free-breathing mode when irradiating the left lobe of liver in order to avoid stomach toxicity.

A Study on Improvement for Fishing Gear and Method of Pound Net - I - Net Shapes of the Commerical Net in the Flow - (정치망 어구어법의 개발에 관한 연구-I - 현용어구의 흐름에 대한 형상 변화 -)

  • Yun, Il-Bu;Lee, Ju-Hee;Kwon, Byeong-Guk;Cho, Young-Bok;Yoo, Jae-Bum;Kim, Seong-Hun;Kim, Boo-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.268-281
    • /
    • 2004
  • A study was carried out in order to estimate the deformation of the pound net according to the current by the model test in the circulating water channel. The tension of the frame rope and the variation of net shape were measured to investigate the deforming of the model pound net in the flow. The results are obtained as follows; 1. The experimental equation between tensions (R) of the frame rope and velocity (ν)was found to be R=$19.58v^{1.98}$($r^2$=0.98) in case of the upperward flow with fish court net and R=$26.90v^{1.72}$($r^2$=0.95)at the upperward flow with bag net according to the velocity from 0.0m/s to 0.6m/s, respectively. 2. As the variation of flow speed inside of the model net was gradually decreased according as which is passed through netting panels, in case of the upperward flow with fish court net, the flow speed was about 70% of initial flow speed at 0.1m/s, 60% at 0.2m/s, 50% at 0.3m/s and 40% 0.4~0.6m/s at the measurement point(h) inside of the first bag net, respectively. In case of the upperward flow with bag net, as the flow speed was steeply decreased according as which if passed through the second bag net, it was 30~60% of the initial flow speed and was 20~30% inside of the first bag net and was about 10~20% inside of the inclined passage net. 3. In case of the upperward flow with fish court net, the variation of deformed angle of fish court net was from 0$^{\circ}$ to 70$^{\circ}$and that of inclined passage net was from 0$^{\circ}$ to 63$^{\circ}$and that of the second bag net was from 0$^{\circ}$ to 47$^{\circ}$ . 4. In case of the upperward flow with fish court net, the variation of deformed angle of the second bag net was changed from 0$^{\circ}$ to 70$^{\circ}$and that of the inclined passage net was from 0$^{\circ}$ to 55$^{\circ}$ and that of the fish court net was from 0$^{\circ}$ to 50$^{\circ}$. The depth ratio of the first bag net was changed from 0% to 35% and that of the second bag net was from 0% to 20% and that of the inclined passage net was from 0% to 35%. In the flow speed 0.5m/s, the inclined passage net was raised up to the entry of the bag net and then prevented it more over 90%. 5. To be increased the opening volume of pound net, it needs to attach the added weight outside of the fish court net, inclined passage net and bag net. At the same time, it needs to adjust the tension of the twine for maintenance of the shape.

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF