• 제목/요약/키워드: Volume Deformation

검색결과 800건 처리시간 0.03초

비정질 합금의 소성 1: 균일변형 (Plasticity of Amorphous Alloys: 1. Homogeneous Deformation)

  • 박경원;이창면;이재철
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.759-772
    • /
    • 2009
  • Amorphous alloys, in addition to being promising materials for a variety of practical applications, provide an excellent test bed for evaluating our understanding of the underlying physics on deformation in amorphous solids. Like many amorphous materials, amorphous alloys can exhibit either homogeneous or inhomogeneous deformation depending on the stress level. The mode of deformation has a strong influence on whether the material behavior is classified as ductile or brittle. It was observed that the characteristics of these deformations are largely dependent on the atomic-scale structures of the alloys and determine the amount of the plastic deformation prior to failure. In this study, the structural features that control the homogeneous deformation of amorphous alloys are outlined on the basis on experiments and molecular dynamics simulations.

Numerical simulation of a single bubble suspension in polyol resin

  • Dongjin Seo;Lim, Yun-Mee;Youn, Jae-Ryoun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.47-48
    • /
    • 2003
  • Dilute bubble suspensions are prepared by introducing carbon dioxide bubbles into polyol resin. The apparent shear viscosity is measured with a wide gap parallel plate rheometer. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a finite volume method (FVM) where multigrid algorithms are incorporated. Transient and steady results of bubble deformation were obtained and were in good agreement with experimental results. At high capillary number, viscosity of the suspension increases as the volume fraction increases, while at low capillary number, the viscosity decreases as the volume fraction increases.

  • PDF

Improvement of Plastic Deformation in Hetrogeneous Atomic Cu-Zr Amorphous Alloy with Distributed Nanocrystals

  • 박준영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1718-1722
    • /
    • 2008
  • This study explores the influence of volume fraction of nanocrystals of Cu-Zr amorphous alloys on shear band formation. As the number of crystals with very tiny size increases, the strain localization, i.e. shear band, decreases without large drop of flow stress. The DPRs also depict no sudden drop and relatively high values. The strain state during the deformation represents a few shear bands at low volume fraction while there are no distinguishable shear bands at high volume fraction of nanocrystals.

  • PDF

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

이동경계문제의 전산유체역학을 위한 체적격자변형코드 (A Volume Grid Deformation Code for Computational fluid Dynamics of Moving Boundary Problems)

  • 고진환;김지웅;변도영;박수형
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1049-1055
    • /
    • 2008
  • 최근 다분야 전산유체 역학에서는 설계 최적화, 공탄성, 강제 경계 운동 등에서 요구되어지는 이동경계문제를 다루게 된다. 이동경계의 변위가 클 경우 강건하고 효율적인 격자 변형 알고리즘의 개발이 필요하다. 본 연구에서는 유한 대형요소와 초월유한보간에 근거한 체적격자 변형 코드를 개발하였고, 정렬격자 다중 블록 Navier-Stokes 코드와 연계하였다. 개발된 코드의 검증을 위해 주기적으로 진동 운동을 하는 에어포일 문제에 대해 계산을 수행 하였고 양력, 항력, 모멘트 계수의 이력 계산 결과가 실험 결과와 잘 일치하였다.

Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.253-262
    • /
    • 2020
  • In this paper, a new higher order shear deformation model is developed for static analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. The model account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG beam. Based on the present higher-order shear deformation model, the equations of motion are derived by the principle of virtual works. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, and geometry on the bending of imperfect FG beams. It can be concluded that the proposed model is simple and precise for the resolution of the behavior of flexural FGM beams while taking into account the shape of distribution of the porosity.

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

고 Mn 스테인리스강의 감쇠능에 미치는 잔류 및 역변태 오스테나이트의 영향 (Effect of Retained and Reversed Austenite on the Damping Capacity in High Manganese Stainless Steel)

  • 김영화;이상환;김슬기;강창룡
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.9-15
    • /
    • 2015
  • The effect of retained and reversed austenite on the damping capacity in high manganese stainless steel with two phases of martensite and austenite was studied. The two phase structure of martensite and retained austenite was obtained by deformation for various degrees of deformation, and a two phase structure of martensite and reverse austenite was obtained by reverse annealing treatment for various temperatures after 70 % cold rolling. With the increase in the degree of deformation, the retained austenite and damping capacity rapidly decreased, with an increase in the reverse annealing temperature, the reversed austenite and damping capacity rapidly increased. With the volume fraction of the retained and reverse austenite, the damping capacity increased rapidly. At same volume of retained and reversed austenite, the damping capacity of the reversed austenite was higher than the retained austenite. Thus, the damping capacity was affected greatly by the reversed austenite.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석 (Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection)

  • 양상식;권태헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF