• Title/Summary/Keyword: Volume Data Modeling

Search Result 281, Processing Time 0.023 seconds

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF