• 제목/요약/키워드: Volume Data Modeling

Search Result 281, Processing Time 0.026 seconds

Optimal Energy Shift Scheduling Algorithm for Energy Storage Considering Efficiency Model

  • Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1864-1873
    • /
    • 2018
  • Energy shifting is an innovative method used to obtain the highest profit from the operation of energy storage systems (ESS) by controlling the charge and discharge schedules according to the electricity prices in a given period. Therefore, in this study, we propose an optimal charge and discharge scheduling method that performs energy shift operations derived from an ESS efficiency model. The efficiency model reflects the construction of power conversion systems (PCSs) and lithium battery systems (LBSs) according to the rated discharge time of a MWh-scale ESS. The PCS model was based on measurement data from a real system, whereas for the LBS, we used a circuit model that is appropriate for the MWh scale. In addition, this paper presents the application of a genetic algorithm to obtain the optimal charge and discharge schedules. This development represents a novel evolutionary computation method and aims to find an optimal solution that does not modify the total energy volume for the scheduling process. This optimal charge and discharge scheduling method was verified by various case studies, while the model was used to realize a higher profit than that realized using other scheduling methods.

Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System (연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

Numerical Analysis on Letdown System Performance Test for YGN 3

  • Seo, Ho-Taek;Sohn, Suk-Whun;Jeong, Won-Sang;Seo, Jong-Tae;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.425-432
    • /
    • 1996
  • Integrated performance test of Chemical and Volume Control System (CVCS) was successfully performed in 1994. However, an extensive effort to correct hardware and software problems in the letdown line was required mainly due to the lack of adequate simulation code to predict the test accurately. Although the LTC computer code was used during the YGN 3'||'&'||'4 NSSS design process, the code can not satisfactorily predict the test due to its insufficient letdown line modeling. This study developed a numerical model to simulate the letdown test by modifying the current LTC code, and then verified the model by comparing with the test data. The comparison shows that the modified LTC computer code can predict the transient behavior of letdown system tests very well. Especially, the model was verified to be able to predict the "Stiction" phenomena which caused instantaneous fluctuations in the letdown backpressure and flowrate. Therefore, it is concluded that the modified LTC computer code with the ability of calculating the "Stiction" phenomena wi11 be very useful for future plant desist and test predictions.predictions.

  • PDF

Resource Allocation Strategy of Internet of Vehicles Using Reinforcement Learning

  • Xi, Hongqi;Sun, Huijuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.443-456
    • /
    • 2022
  • An efficient and reasonable resource allocation strategy can greatly improve the service quality of Internet of Vehicles (IoV). However, most of the current allocation methods have overestimation problem, and it is difficult to provide high-performance IoV network services. To solve this problem, this paper proposes a network resource allocation strategy based on deep learning network model DDQN. Firstly, the method implements the refined modeling of IoV model, including communication model, user layer computing model, edge layer offloading model, mobile model, etc., similar to the actual complex IoV application scenario. Then, the DDQN network model is used to calculate and solve the mathematical model of resource allocation. By decoupling the selection of target Q value action and the calculation of target Q value, the phenomenon of overestimation is avoided. It can provide higher-quality network services and ensure superior computing and processing performance in actual complex scenarios. Finally, simulation results show that the proposed method can maintain the network delay within 65 ms and show excellent network performance in high concurrency and complex scenes with task data volume of 500 kbits.

Modeling of Ocean Circulation in the Neighboring Seas of Korean Peninsula from Global Ocean Circulation Model (전구 해수순환 수치모형에 의한 한반도 주변의 순환 모사)

  • Choi Bung Ho;Choi Young Jin;Kim Cheol Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.241-257
    • /
    • 2004
  • Global prognostic models based on NCOM(NCAR CSM Ocean Model) of NCAR which is generic from Bryan-Cox-Semtner model are established to study the ocean circulation in the neighboring seas of Korean peninsula. The model domain covers areas from $80.6{^\circ}S~88.6{^\circ}N$in meridional direction and the vertical water column is divided into 15 levels taking enhanced grid resolution of $0.3^\circ$ around Korean peninsula. Island option is used for 22 islands to simulate inshore circulation by hole-relaxation method and the restart hydrographic data are taken from NCAR(1998) CSM model that has been run for 300 years. The wind stress data are taken from Choi et al. (2002). Based on the model results, circulation patterns in the NW Pacific and global oceans are investigated. Volume transports calculated at five straits in the neighboring seas of Korean peninsula are compared with the results from Choi et al. (2002) and other observed data.

Effective Decision of the Route Alignment with Digital Terrain (수치지형모형을 이용한 효율적인 노선결정)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Hyung-Seok;Lee, Sung-Soong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.195-203
    • /
    • 1996
  • The 3-D analysis of terrain for route design and selection is being used as important basic data for effective judgement of political draft. This study is to decide efficient alignment of the entry route and design bridge by modeling, analyzing and displaying surface with digital terrain data. In this study we analyze slope, aspect, shaded-relief, line of sight and watershed on the base of DTM such as contour, TIN and grid. And we can not only esti mate end-area volume for road construction by calculating cut and fill and displaying mass-curve but also recognize the scene after execution with simulation of road and terrain. The result of this study reveals that visual effects of the 3-D terrain data are very effective for designer and decisionmaker to select and review alternative route with regard to terrain characteristics.

  • PDF

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid (1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide 이온성 액체에 대한 이산화탄소의 고압 용해도)

  • Nam, Sang-Kyu;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.79-91
    • /
    • 2014
  • Solubility data of carbon dioxide ($CO_2$) in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide ($[bmpip][Tf_2N]$) ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the $CO_2$ solubility in the $[bmpip][Tf_2N]$ ionic liquid have never been reported in the literature by other investigators. The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the $CO_2+[bmpip][Tf_2N]$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the $CO_2$ solubility, the $CO_2$ solubilities in $[bmpip][Tf_2N]$ used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ($[bmim]Tf_2N]$). As the equilibrium pressure increased, the $CO_2$ solubility in $[bmpip][Tf_2N]$ increased sharply. On the other hand, the $CO_2$ solubility decreased with increasing temperature. The mole fraction-based $CO_2$ solubilities were almost the same for both $[bmpip][Tf_2N]$ and $[bmim][Tf_2N]$, regardless of temperature and pressure. The phase equilibrium data for the $CO_2+[bmpip][Tf_2N]$ systems have been correlated using the Peng-Robinson equation of state.

Water Quality Modelling of Daechung Lake - Effect of Yongdam Dam (용담댐의 영향분석을 위한 대청호 수질모델링)

  • Seo, Dong-Il;Lee, Eun-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.737-751
    • /
    • 2002
  • Water quality in Daechung Lake was predicted for various discharge conditions of Yongdam dam. The same scenarios were applied as in the previous paper by the authors for Keum River water quality modeling. Effects in water quality due to changes in discharge conditions from Yongdam Dam were less distinct to the Daechung Lake than to the inflowing Keum River due to sink processes in the lake. For the minimum flow year, it is appropriate to maintain Yongdam dam discharge rate to 8.9 $m^3$/sec considering the current field conditions and future predictions of TN and TP concentrations of Yongdam dam. Effect of Yongdam dam discharge conditions to the Daechung Lake water quality were stronger for drier years. However it should be noted that the effects were dependent upon the water quality of Yongdam discharge at the same time. Therefore, water quality management effort should be emphasized before the discussion over the discharge volume of Yongdam dam. The input data sets for simulations in this study were formulated using the available data and assumptions based on authors experiences for the fields. Therefore, continued data collection effort will ensure the validity of this study.

Experimental analysis and modeling for predicting bistatic reverberation in the presence of artificial bubbles (인공기포 존재 환경에서의 양상태 잔향음 예측을 위한 해상 실험 분석 및 모델링 연구)

  • Yang, Wonjun;Oh, Raegeun;Bae, Ho Seuk;Son, Su-Uk;Kim, Da Sol;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.426-434
    • /
    • 2022
  • Bubbles generated by various causes in the ocean are known to persist for long periods of time. Although the volume occupied by bubbles in the ocean is small, the presence of bubbles in ocean due to resonance and attenuation greatly affects the acoustic properties. Accordingly, bistatic reverberation experiment was performed in the ocean where artificial bubbles exist. A number of transducers and receivers were installed on 6 buoys arranged in a hexagonal shape, and blowing agents were dropped in the center of the buoy to generate bubbles. For reverberation modeling that reflects acoustic characteristics changed by bubbles, the spatial distribution of bubbles was estimated using video data and received signals. A measurement-based bubble spectral shape was used, and it was assumed that the bubble density within the spatial distribution of the estimated bubble was the same. As a result, it was confirmed that the bubble reverberation was simulated in a time similar to the measured data regardless of the bubble density, and the bubble reverberation level similar to the measured data was simulated at a void fraction of about 10-7 ~ 10-6.8.