• Title/Summary/Keyword: Volume Data Modeling

Search Result 281, Processing Time 0.03 seconds

L-THIA/NPS to Assess the Impacts of Urbanization on Estimated Runoff and NPS Pollution (도시화에 따른 유출과 비점원 오염 영향을 평가하기 위한 L-THIA/NPS)

  • Kyoung-Jae Lim;Bernard A. Engel;Young-Sug Kim;Joong-Dae Choi;Ki-Sung Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.78-88
    • /
    • 2003
  • The land use changes from non-urban areas to urban areas lead to the increased impervious areas, consequently increased direct runoff and higher peak runoff. Urban areas have also been recognized as significant sources of Nonpoint Source (NPS) pollution, while agricultural activities have been known as the primary sources of NPS pollution. Many features of the L-THIA/NPS GIS, L-THIA/NPS WWW system have been enhanced to provide easy-to-use system. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed in Indiana to evaluate the accuracy of the model. The L-THIA/NPS GIS estimated yearly direct runoff values match the direct runoff separated from U.S. Geological Survey stream flow data reasonably. The $R^2$ and Nash-Sutcliffe values are 0.67 and 0.60, respectively. The L-THIA estimated runoff volume and total nitrogen loading for each land use classification in the LEC watershed were computed. The estimated runoff volume and total nitrogen loading in the LEC watershed increased by 180% and 270% for the 20 years. Urbanized areas -"Commercial", "High Density Residential", and "Low Density Residential"- of the LEC watershed made up around 68% of the 1991 total land areas, however contributed more than 92% of average annual runoff and 86% of total nitrogen loading. Therefore, it is essential to consider the impacts of land use change on hydrology and water quality in land use planning of urbanizing watershed.nning of urbanizing watershed.

Attributes for Developing a Database for Construction Information Interface

  • Moon, Sungwoo;Cho, Kyeongsu
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.673-673
    • /
    • 2015
  • Earthwork is an operation that provides space for structures, and it takes up a large portion of the construction costs in a construction project. In large-scale earthwork, numerous types of construction equipment are used in the operation. The types of equipment should be selected based on the field conditions and the construction methods. These construction vehicles are constantly changing positions during the earthwork operation. Therefore, the equipment operators require effective communication to ensure the efficiency of the earthwork operation. All equipment operators should exchange information with the other equipment operators. Information should be exchanged continuously to support decision making and increase productivity during the earthwork operation at the construction site. This paper investigates the attributes required for an information interface between construction vehicles during an earthwork operation. This paper 1) discusses the importance of an information interface for construction vehicles in order to increase productivity during an earthwork operation, 2) analyses the types of attributes that need to be communicated between construction vehicles, and 3) provides a database that has been built for attribute control. The database built for the information interface between construction vehicles will enhance communication between vehicle operators. Table I shows the typical attributes that should be shared between the excavator operator and the dump truck operator. This information needs to be shared among the operators, as it helps them to plan the earthwork operation in a more efficient manner. A database has been developed to store this information in an entity relation diagram. A user-interface display environment is also developed to provide this information to the operators in the construction vehicles. The proposed interface can help exchange information effectively and facilitate a common understanding during the earthwork operation. For example, the vehicle operators will be aware of the planned volume, excavated volume, transportation time, and transportation numbers. As a part of this study, mobile devices, such as mobile phones and google glasses, will be used as hands-on communication tools.

  • PDF

Source Identification of PM-10 in Suwon Using the Method of Positive Matrix Factorization (PMF 방법론을 이용한 수원지역 PM-10의 오염원 확인)

  • 황인조;김태오;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.133-145
    • /
    • 2001
  • The receptor modeling is one of the statistical methods to achieve reasonable air pollution strategies. The pur-pose of this study was to survey the concentration variability oi inorganic elements and ionic species in the PM-10 particles, to qualitatively characterize emission sources by an advanced algorithm called positive matrix factoriza-tion(PMF) as a receptor model that can strictly provide results in every loading matrix. A total of 254 samples was collected by a PM-10 high volume air sampler from Mar. 1997 to Feb. 1998 in Kyung Hee University at Suwon Campus. Fourteen chemical species(Zn, Cu, Fe, Pb, Al, Mn, $Na^{+}$, NH$_4$+, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, $SO_4^{2-}$, $NO_{3}^{-}$, and $Cl^{-}$) were determined by AAS and IC methods. The study results showed that the average monthly concentration of PM-10 particles were 86.3$\mu\textrm{g}$/$\textrm{m}^3$ in March (maximum) and 28.5$\mu\textrm{g}$/$\textrm{m}^3$ in August(minimum), respectively. The concentrations of Na+, NH$_4$+, $K^{+}$ and $Cl^{-}$ in winter, $Mg^{2+}$, $Ca^{2+}$ and $NO_{3}^{-}$, in spring, and $SO_4^{2-}$ in summer showed the largest peak concentration for the respective season. Through and app-lication of a PMF program of Pm-10 concentration data of Suwon, 9 sources were qualitatively identified , such as incineration source, oil burning source, soil related source, open burning source automobile source, coal burning sources, secondary sulfate related source, and secondary nitrate related source.

  • PDF

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

Study on Development of Virtual Components for Active Air Suspension System Based on HILS for Commercial Vehicle (상용차용 HILS기반 능동형 공기현가 시스템의 가상 Components 개발에 관한 연구)

  • Ko, Youngjin;Park, Kyungmin;Baek, Ilhyun;Kim, Geunmo;Lee, Jaegyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.26-36
    • /
    • 2013
  • Purpose of this study is to develop virtual components and environment for developing a controller of an Active Air Suspension System in laboratory that slough off existing development environment using real vehicle test. This paper presents an air spring modeling and analysis of air suspension system for a commercial vehicle. Preferentially, It was performed vehicle test for pneumatic system and an air spring for characteristic analysis of system. Each component of an air spring suspension system was developed through emulations and modeling of system for pressure and height sensors in the basis on test results in SILS environment. Non-linear characteristics of air spring are accounted for using the measured data. Also, pressure and volume relations for vehicle hight control is considered. After performance verification of virtual model was performed, we developed virtual environment based on HILS for an Active Air Suspension System. We studied estimation and verification technology for control algorithm that developed.

A Study on the Semantic Modeling of Manufacturing Facilities based on Status Definition and Diagnostic Algorithms (상태 정의 및 진단 알고리즘 기반 제조설비 시멘틱 모델링에 대한 연구)

  • Kwang-Jin, Kwak;Jeong-Min, Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.163-170
    • /
    • 2023
  • This paper introduces the semantic modeling technology for autonomous control of manufacturing facilities and status definition algorithm. With the development of digital twin technology and various ICT technologies of the smart factory, a new production management model is being built in the manufacturing industry. Based on the advanced smart manufacturing technology, the status determination algorithm was presented as a methodology to quickly identify and respond to problems with autonomous control and facilities in the factory. But the existing status determination algorithm informs the user or administrator of error information through the grid map and is presented as a model for coping with it. However, the advancement and direction of smart manufacturing technology is diversifying into flexible production and production tailored to consumer needs. Accordingly, in this paper, a technology that can design and build a factory using a semantic-based Linked List data structure and provide only necessary information to users or managers through graph-based information is introduced to improve management efficiency. This methodology can be used as a structure suitable for flexible production and small-volume production of various types.

Streamflow Estimation for Subbasins of Gap Stream Watershed by Using SWAT2000 Model (SWAT2000 모형을 이용한 갑천수계의 소유역별 유출량 추정)

  • Moon, Jong-Pil;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.29-38
    • /
    • 2006
  • Geographic Information System has extended to higher assessment of water resources. GIS linking with hydrological model becomes a trend in water resource assessment modeling. One of the most popular models is SWAT2000 which have effectiveness in multi-purpose processes for predicting the impact of land management practices on water, sediments and chemicals yields in large complex watershed with varying soils, land uses, and management conditions over long period of time. In this study, SWAT2000 model was applied to Gap stream watershed in Daejeon city where TMDL (Total Maximum Daily Load) Regulation would be implanted. The Gap Stream watershed was partitioned into 8 subbasins, however, only 3 out of 8 subbaisns were observed for having practical gauged data on the basis of streamflow from the year of 2002 to 2005. Gauged streamflow data of Indong, Boksu and Hoeduck stations were used for calibration and validation of the SWAT Streamflow simulation. Estimation Efficiency Analysis (COE), Regression Analysis ($R^{2}$), Relative Error (R.E.) were used for comparing observed streamflow data of the 3 subbasins on the daily and monthly basis with estimated streamflow data in order to fix optimized parameters for the best fitted results. COE value for the daily and monthly streamflow was ranged from 0.45 to 0.96. $R^{2}$ values for daily and monthly streamflow ranged from 0.51 to 0.97. R.E. values for total streamflow volume ranged from 3 % to 22.5 %. The accuracy of the model results shows that the SWAT2000 model can be applicable to Korean watersheds like the Gap Stream watershed that needs to be partitioned into a number of subbasins for TMDL regulation.

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

Assessment of Dosimetric Leaf Gap According to Measuring Active Volume of Detector (검출기 측정 용적에 따른 Dosimetric Leaf Gap 변화와 정확성 검증에 대한 연구)

  • Dae-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.863-870
    • /
    • 2022
  • DLG (Dosimetric Leaf Gap) and transmission factor are important parameters of MLC modeling in treatment planning system. In this study, DLG and transmission factor of HD-MLC were measured using detector with different measuring volumes, and the accuracy of the treatment plans was evaluated according to the DLG values. DLG was measured using the dynamic sweeping gap method with Semiflux3D and MicroDiamond detectors. Then, 10 radiation treatment plans were generated to optimize the DLG value and compared with the measurement results. Photon energies 6, 8, 10 MV, the DLG measured by Semiflux3D were 0.76, 0.83, and 0.85 mm, and DLG measured by MicroDiamond were 0.78, 0.86, and 0.9 mm. All plans were measured by portal dosimetry and analyzed using Gamma Evaluation. In the 6 MV photon beams, the average gamma passing rate were 94.3% and 98.4% for DLG 0.78 mm and 1.15 mm. In the 10 MV photon beam, the average gamma passing rate were 91.2% and 97.6% for DLG 0.9 mm and 1.25 mm. HD-MLC needs accurate modeling in the treatment planning system. DLG could be used measured data using small volume detector. However, for better radiation therapy, DLG should be optimized at the commissioning stage of LINAC.

Study on Temperature Characteristic of Pressurization System Using Helium Gas (헬륨 가압시스템에 대한 온도특성 연구(II))

  • Chung Yonggahp;Cho Namkyung;Kil Kyoungsub;Kim Youngmog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.168-175
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and Test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test Facility).

  • PDF