• Title/Summary/Keyword: Volume Amplification

Search Result 33, Processing Time 0.024 seconds

Trading Volume and Overpricing of Lottery-type Stocks (거래량이 복권특성 종목의 기대수익률에 미치는 영향)

  • Yong-Ho Cheon
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.113-129
    • /
    • 2023
  • Purpose - The purpose of this study is to examine whether trading volume amplifies the extent to which lottery-type stocks are overpriced, and whether economic sentiment index explains time-variation in the magnitude of the volume amplification effect. Design/methodology/approach - We examine monthly returns on 5x5 monthly bivariate portfolios formed by lottery characteristics (measured by maximum daily return) and trading volume. In addition, we perform time-series regression tests to examine how the volume amplification effect changes in high and low economic sentiment periods, after controlling for Fama-French three factors. Findings - Our bivariate portfolio analysis shows that the overpricing of lottery-type stocks are mostly pronounced among high trading volume stocks. In contrast, for low trading volume stocks, overpricing of lottery-type stocks appears to vanish. Furthermore, the amplification effect of trading volume on overpricing of lottery-type stock is concentrated in high economic sentiment periods. Research implications or Originality - This study is the first attempt to examine whether trading volume drives lottery-type stocks' overpricing in the Korean stock market. Furthermore, our analysis unveils the time-varying nature of volume amplification effect. The results suggest that trading volume might play a important hidden role in asset pricing, opening a new line of researches in the future.

The Wireless Network Optimization of Power Amplification via User Volume in the Microcell Terrain

  • Guo, Shengnan;Jiang, Xueqin;Zhang, Kesheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2581-2594
    • /
    • 2018
  • The microcell terrain is the most common wireless network terrain in our life. In order to solve wireless network optimization of weak coverage in the microcell terrain, improve call quality and reduce the cost of the premise, power amplifiers in base stations should be adjusted according to user volume. In this paper, characteristics of microcell topography are obtained after analysis. According to the topography characteristics of different microcells, changes in the number of users at different times have been estimated, meanwhile, the number of scatter users are also obtained by monitoring the PCCPCH RSCP and other parameters. Then B-Spline interpolation method has been applied to scatter users to obtain the continuous relationship between the number of users and time. On this basis, power amplification can be chosen according to changes in the number of users. The methods adopted by this paper are also applied in the engineering practice, sampling and interpolation are used to obtain the number of users at all times, so that the power amplification can be adjusted by the number of users in a microcell. Such a method is able to optimize wireless network and achieve a goal of expanding the area of base stations, reduce call drop rate and increase capacity.

Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector (2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석)

  • 최환석;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.

Wind-induced dynamic response of recessed balcony facades

  • Matthew J. Glanville;John D. Holmes
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.193-202
    • /
    • 2024
  • Modern high-rise tower designs incorporating recessed balcony cavity spaces can be prone to high-frequency and narrow-band Rossiter aerodynamic excitations under glancing incident winds that can harmonize and compete with recessed balcony volume acoustic Helmholtz modes and facade elastic responses. Resulting resonant inertial wind loading to balcony facades responding to these excitations is additive to the peak design wind pressures currently allowed for in wind codes and can present as excessive facade vibrations and sub-audible throbbing in the serviceability range of wind speeds. This paper presents a methodology to determine Cavity Amplification Factors to account for façade resonant inertial wind loads resulting from balcony cavity aero-acoustic-elastic resonances by drawing upon field observations and the results of full-scale monitoring and model-scale wind tunnel tests. Recessed balcony cavities with single orifice type openings and located within curved façade tower geometries appear particularly prone. A Cavity Amplification Factor of 1.8 is calculated in one example representing almost a doubling of local façade design wind pressures. Balcony façade and tower design recommendations to mitigate wind induced aero-acoustic-elastic resonances are provided.

Optimization of a Multiplex DNA Amplification of Three Short Tandem Repeat Loci for Genetic Identification

  • Ryu, Jae-Song;Noh, Jae-Sang;Koo, Yoon-Mo;Lee, Choul-Gyun;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.873-876
    • /
    • 2000
  • Short tendem repeat (STR) loci have been used in the field of forensic science. There are literally hundreds of STR systems which have been mapped throughout the human genome. These STR loci are found in almost every chromosome in the genome. They may be amplified using a variety of PCR primers. In this study, a DNA genotyping system based on the multiplex amplification of highly polymorphic STR loci was developed. Three STR loci with nonoverlapping allele size ranges have been utilized in the multiplex amplification including the Neurotensin receptor gene, D21S11, and Human tyrosine hydroxylase gene. The optimal condition for triplex PCr was obtained in a solution with a total volume of $25{\mu}l$ containing 2.0 U of Taq polymerase, 3 mM of $MgCl_2$, $300{\mu}M$ of dNTP, 10 pmole of each primer set, an annealing temperature of $62^{\circ}C$, and 35 cycles. The optimized condition was successfully employed in a family paternity test.

  • PDF

Roles of Malaysian Online Newspapers in the Construction of Public Opinion on Rare Earth Risks

  • Hasan, Nik Norma Nik;Dauda, Sharafa
    • Asian Journal for Public Opinion Research
    • /
    • v.8 no.4
    • /
    • pp.432-452
    • /
    • 2020
  • This study explored the representation of risks from the controversial Lynas rare earth refining as a risk event by five Malaysian online mainstream and alternative newspapers using qualitative content analysis. The aim is to uncover the role of the news media in the social amplification and attenuation of risks within the literature evidence as those roles are still uncertain. Content analysis is used to explore the online newspapers' roles guided by the Social Amplification of Risk Framework (SARF). The representations typified environmental, financial, health, occupational, property, radioactive, and technological risks and established connections between four risk types (environmental, financial, radioactive, and health risks). Radioactive risk was repeatedly associated with other risks, suggesting that the volume and information flow focused on radioactive risk as a key ingredient for amplification. This connection shows that the nature of the relationship between risks is multidimensional, contradicting the unidirectional type found in previous studies. Alternative online newspapers amplified and attenuated more risks, thus, providing more diverse coverage than mainstream sources. Consequently, this study provides evidence that risk representation from rare earth refining in a digital news environment is multidimensional and intensified or weakened in a multi-layered pattern. The stakeholders are engaged in a contestation by positioning their narratives to oppose or support their interests, which are amplified or attenuated by the online newspapers as social amplification stations.

Estimation of Dynamic Load Amplification Factors under Various Roughness Indices and Vehicle Classes (주행차량의 종류와 아스팔트 콘크리트 포장 평탄성에 따른 동적하중 증가계수 산정)

  • Choi, Jun-Seong;Seo, Joo-Won;Kim, Jong-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, frequently passing vehicles with two, three, four, and five axles were chosen through traffic volume analysis in Kyung-In Expressway in order to analyze how the road roughness and vehicle speed affect on the dynamic loads for roads in various vehicle classes. Dynamic loads according to chosen vehicles are estimated by TruckSim program. Dynamic load amplification factor is ratio between dynamic and static loads, and it is also determined for each vehicle classes. From the result of dynamic loads estimated by the dynamic load amplification factor, it is shown that for three-axles vehicle, when IRI is 3.5 and vehicle speed is 100km/hr, asphalt pavements receive additional 36% of static loads in maximum. The analysis of the amplification factor according to each vehicle classes also indicates that the amplification factor increases as the distance between the axles becomes smaller and each axle receives more loads.

Rapid and Efficient Purification of Nucleic Acids from the Macroalga Porphyra(Rhodophyta) (홍조류인 한국산 김종에서의 염색체 DNA 분리방법)

  • 류태형;최학선;최경희;이춘환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1166-1172
    • /
    • 1998
  • A method for the isolation and purification of DNA from a red algae, Porphyra was innovated. The innovation of the method consists mainly of three steps that include sodium acetate treatment, chloroform extraction, and 0.2 volume isopropanol precipitation step. The sodium acetate treatment was designed to remove polysaccharide contamination, and the isopropanol step to remove proteins and salts contaminents. Genomic DNA,s of several species(for example, P. tenera, P. yezoensis, P. seriata, and P. pseudolinearis) was successfully isolated by the innovated method. The amount of DNA purified from one g of sample material with the innovated method was 53 g in average. The resulting DNA was characterized to include high molecular weight and showed no nuclease activity. The DNA was pure enough to be digested directly by various restriction enzymes without any difficulties. Porphyra DNA was pure enough and adequate for amplification reaction through the polymerase chain reaction (small nuclear rDNA PCR amplification).

  • PDF

Effect of building volume and opening size on fluctuating internal pressures

  • Ginger, John D.;Holmes, John D.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.361-376
    • /
    • 2008
  • This paper considers internal pressure fluctuations for a range of building volumes and dominant wall opening areas. The study recognizes that the air flow in and out of the dominant opening in the envelope generates Helmholtz resonance, which can amplify the internal pressure fluctuations compared to the external pressure, at the opening. Numerical methods were used to estimate fluctuating standard deviation and peak (i.e. design) internal pressures from full-scale measured external pressures. The ratios of standard deviation and peak internal pressures to the external pressures at a dominant windward wall opening of area, AW are presented in terms of the non-dimensional opening size to volume parameter, $S^*=(a_s/\bar{U}_h)^2(A_W^{3/2}/V_{Ie})$ where $a_s$ is the speed of sound, $\bar{U}_h$ is the mean wind speed at the top of the building and $V_{Ie}$ is the effective internal volume. The standard deviation of internal pressure exceeds the external pressures at the opening, for $S^*$ greater than about 0.75, showing increasing amplification with increasing $S^*$. The peak internal pressure can be expected to exceed the peak external pressure at the opening by 10% to 50%, for $S^*$ greater than about 5. A dominant leeward wall opening also produces similar fluctuating internal pressure characteristics.

Numerical Analysis of the Two-Dimensional Pollutant Dispersion Over Hilly Terrain (산지 내 오염물질 확산의 2차원 수치해석)

  • 김현구;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.383-396
    • /
    • 1997
  • Numerical prediction of the pollutant dispersion over a two-dimensional hilly terrain is presented. The dispersion model used in the present work is based on the gradient diffusion theory and the finite-volume method on a non-orthogonal boundary-fitted grid system. The numerical model is validated by comparing the results with the available experimental data for the flat-floor dispersion within a turbulent boundary-layer. The numerical error analysis is performed based on the guideline of Kasibhatla et al.(1988) for the elevated-source dispersion in the flat-floor boundary layer having a power-law velocity and linear eddy-diffusivity profile. The influences of the two-dimensional hilly terrain on the dispersion from a continuously released source are numerically investigated by changing the emission locations and heights. It is found that the distributions of ground-level concentration are strongly influenced by the source location and the emission height. Hence, the terrain amplification factor is greatly enhanced when the pollutant source is located within a flow separation region. Dispersion from a source of short duration is also simulated and the duration time of the pollutant is compared at several downstream locations on a hilly terrain. The results of the numerical prediction are applied to the evaluation of environmental impacts due to the automobile exhausts at the seashore highway with a parallel mountain range.

  • PDF