• 제목/요약/키워드: Voltage-dependent $Ca^{2+}$ channel

Search Result 105, Processing Time 0.022 seconds

Phosphorylation as a Signal Transduction Pathway Related with N-channel Inactivation in Rat Sympathetic Neurons (N형 칼슘통로 비활성화와 연계된 세포 신호전달 체계로서의 인산화과정)

  • Lim Wonil;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • In N-type $Ca^{2+}$ channels, the mechanism of inactivation - decline of inward current during a depolarizing voltage step- is still controversial between voltage-dependent inactivation and $Ca^{2+}$ -dependent inactivation. In the previous paper we demonstrated that fast component of inactivation of N-type calcium channels does not involve classic $Ca^{2+}$ -dependent mechanism and the slowly inactivating component could result from a $Ca^{2+}$ -dependent process. However, there should be signal transduction pathway which enhances inactivation no matter what the inactivation mechanism is. We have investigated the effect of phosphorylation on calcium channels of rat sympathetic neurons. Intracellular dialysis with the phosphatase inhibitors okadaic acid markedly enhanced the inactivation. The rapidly inactivating component is N-type calcium current, which is blocked by $\omega$-conotoxin GVIA. Staurosporine, a nonselective protein kinase inhibitor, prevented the action of okadaic acid, suggesting that protein phosphorylation is involved. More specifically lavendustin C, inhibitor of CaM kinase II, prevented the action of okadaic acid, suggesting that calmodulin dependent pathway is involved in inactivation process. It is not certain to this point whether phosphorylation process is inactivation itself. Molecular biological research regarding binding site should be followed to address the question of how the divalent cation binding site is related to phoshorylation process.

  • PDF

Vasorelaxant effect of fluoxetine in isolated rat aorta (흰쥐 대동맥에서 fluoxetine의 혈관 이완 효과)

  • Kim, Shang-Jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.515-522
    • /
    • 2004
  • The vasorelaxant effect of serotonin reuptake inhibitor fluoxetine was investigated in rat isolated thoracic aorta. Fluoxetine induced a concentration-dependent relaxation in aorta precontracted with phenylephrine (PE) and KCl. These relaxations were suppressed by removal of the endothelium (-E) or pretreatment of nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-Larginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue (MB) and 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), and $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings. However, fluoxetine-induced relaxations were not suppressed by pretreatment of $K^{+}$ channel blockers, tetrabutylammonium and glibenclamide, in PE-precontracted endothelium intact (+E) rings. The fluoxetine-induced relaxations were not suppressed by removal of the endothelium or pretreatment of LNNA and MB in KCl-precontracted +E rings. Also, fluoxetine inhibited PE-induced sustained contraction in +E rings. These inhibitory effects of fluoxetine on contractions could be reversed by removal of the endothelium or pretreatment of L-NNA, L-NAME, MB, ODQ, nifedipine and verapamil, but not by pretreatment of etrabutylammonium and glibenclamide. These findings suggest that the vasorelaxant effect of fluoxetine is modulated by intracellular $Ca^{2+}$ with an involvement of endothelial NO-cGMP pathway and also may be related to the inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Voltage-Dependent Ionic Currents and Their Regulation by GTP and Phorbol Ester in the Unfertilized Eggs of Mouse and Hamster

  • Kim, Ik-Hyun;Kim, Yang-Mi;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.93-105
    • /
    • 1993
  • The present study was performed to investigate the properties of ionic currents elicited by voltage pulses in the unfertilized eggs of mouse and hamster by using the whole cell voltage clamp techniques and to find out if there are any differences in properties between eggs of the two rodents. In addition, the modulatory effect of G proteins and protein kinase C (PKC) on the ionic channels were observed. The inward current in hamster eggs was shown to be due to $Ca^{2+}\;current\;(i_{ca})$). The current voltage relations of these currents in hamster egg were analogous to those in mouse eggs. The amplitude of $i_{ca}$ in the hamster egg was larger than that in the mouse egg ($-3.12{\pm}1.07\;nA\;vs.\;-1.71{\pm}0.71\;nA,\;mean{\pm}\;SD$). These results suggest that the $Ca^{2+}$ channels in both kinds of eggs have similar channel properties but their density, and/or conduct ance per unit area is higher in hamster eggs than in mouse eggs. Outward currents in eggs of both mouse and hamster were carried by $K^+$. In hamster eggs, they appeared to comprise at least two components; a transient outward component ($i_{to}$) and a steady state component ($i_{\infty}.$ The $i_{to}$ was found to be dependent on intracellular $Ca^{2+}$ concentration; whereas on the other hand $i_{\infty}\;was\;Ca^{2+}$-independent. $Ca^{2+}$ currents were increased in eggs treated with GTP (or $GTP{\gamma}S$) or fluoroaluminate ($AIF_4^-$). In the hamster egg these increments were antagonized by GDP (or $GDP{\beta}S$) application. In contrast to the enhancement of $i_{ca},\;i_k$ was reduced following GTP (or $GTP{\gamma}S$) perfusion in mouse eggs. The transient component ($i_{to}$) in hamster eggs was increased by adding GTP but decreased by phorbol ester, TPA or dioctanoyl glycerol (DOG). Simultaneous application of $GTP{\gamma}S$ and DOG suppressed $i_{to}$ more effectively than a single application or DOG or TPA. From the above results, we have shown that ionic currents elicited by voltage pulses existed in the unfertilized eggs of mouse and hamster. There are at least two types of currents, $i_{ca}\;and\;i_k$ in mouse eggs, while three types, $i_{ca},\;Ca^{2+}$-dependent $i_k$ and $Ca^{2+}$-independent $i_k$ exist in hamster eggs. ionic channels in these eggs may be regulated either directly by GTP and PKC or indirectly by the substances linked with GTP and PKC.

  • PDF

Light Effects on the Membrane Potential in Oat Cells

  • Kim, Kwan-Bae;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.382-386
    • /
    • 1995
  • One of the reaction pathways in light-invoked signal transduction can be initiated through ion fluxes across the plasma membrane in higher plants. We isolated protoplasts from oat coleoptile and examined the effects of light on the membrane potential using a membrane potential-sensitive fluorescent probe (bisoxonol). Both red and far-red light initially induced a hyperpolarization in oat cells. Red light-induced hyperpolarization was effectively dissipated by 100 mM $K^+$, but the hyperpolarization induced by far-red light was not depolarized by any of the cations ($K^+$, $Ca^{2+}$, $Li^+$, $Na^+$) tested. The depolarization induced by red light and $K^+$ was inhibited by 200 mM TEA, which is a $K^+$ channel blocker. These results suggest that $K^+$ influx through the inward $K^+$ channel may be a depolarization path in the phytochrome-mediated signal transduction.

  • PDF

Effects of Pharmacological Modulators of $Ca^{2+}-activated\;K^+$ Channels on Proliferation of Human Dermal Fibroblast

  • Yun, Ji-Hyun;Kim, Tae-Ho;Myung, Soon-Chul;Bang, Hyo-Weon;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Employing electrophysiological and cell proliferation assay techniques, we studied the effects of $Ca^{2+}$ -activated $K^+$ channel modulators on the proliferation of human dermal fibroblasts, which is important in wound healing. Macroscopic voltage-dependent outward $K^+$ currents were found at about -40 mV stepped from a holding potential of -70 mV. The amplitude of $K^+$ current was increased by NS1619, a specific large-conductance $Ca^{2+}$-activated $K^+$ (BK) channel activator, but decreased by iberiotoxin (IBTX), a specific BK channel inhibitor. To investigate the presence of an intermediate-conductance $Ca^{2+}$-activated $K^+$ (IK) channels, we pretreated the fibroblasts with low dose of TEA to block BK currents, and added 1-EBIO (an IK activator). 1-EBIO recovered the currents inhibited by TEA. When various $Ca^{2+}$-activated $K^+$ channel modulators were added into culture media for 1∼3 days, NS1619 or 1-EBIO inhibited the cell proliferation. On the other hand, IBTX, clotrimazole or apamin, a small conductance $Ca^{2+}$-activated $K^+$ channel (SK) inhibitor, increased it. These results suggest that BK, IK, and SK channels might be involved in the proliferation of human dermal fibroblasts, which is inversely related to the channel activation.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Mechanism for the Change of Cytosolic Free Calcium Ion Concentration by Irradiation of Red Light in Oat Cells

  • Han, Bong-Deok;Lee, Sang-Lyul;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.499-503
    • /
    • 1995
  • In our previous studies (Chae et al., 1990; Chae et a1., 1993), we found that a phytochrome signal was clearly connected with the change in cytosolic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in oat cells. It was determined that the $[Ca^{2+}]_i$ change occured both by mobilization out of the intracellular $Ca^{2+}$ store and by influx from the medium. The specific aim of this work is to elucidate the processes connecting $Ca^{2+}$ mobilization and influx. The cells treated with thapsigargin (increasing $[Ca^{2+}]_i$ by inhibition of the $Ca^{2+}$-ATPase in the calcium pool) in the presence of external $Ca^{2+}$ showed the same increasing pattern (sustained increasing shape) of $[Ca^{2+}]_i$ as that measured in animal cells. Red light irradiation after thapsigargin treatment did not increase $[Ca^{2+}]_i$ These results suggest that thapsigargin also acts specifically in the processes of mobilization and influx of $Ca^{2+}$ in oat cells. When the cells were treated with TEA ($K^+$ channel blocker), changes in $[Ca^{2+}]_i$ were drastically reduced in comparison with that measured in the absence of TEA. The results suggest that the change in $[Ca^{2+}]_i$ due to red light irradiation is somehow related with $K^+$ channel opening to change membrane potential. The membrane potential change due to $K^+$ influx might be the critical factor in opening a voltage-dependent calcium channel for $Ca^{2+}$ influx.

  • PDF

Mechanism of the relaxant action of Trazodone in isolated rat aorta (흰쥐 대동맥에서 Trazodone의 혈관이완 작용기전)

  • Kim, Shang-jin;Kim, Jeong-gon;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.587-595
    • /
    • 2003
  • The aim of this study was to investigate trazodone's effect on vasorelaxation and blood pressure lowering and to examine its underlying mechanism of action in isolated thoracic aorta and anesthesized rats. Precontracted aortic rings with high KCl were relaxed with trazodone, at concentrations of $50{\mu}M$ or greater. However, precontracted rings with phenylephrine (PE) were relaxed with trazodone, at concentrations of $0.03{\mu}M$ or greater, in a concentration-dependent manner. These relaxant effects of trazodone on endothelium intact rat aortic rings were significantly greater than those on denuded rings. The trazodone-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-L-arginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a $Ca^{2+}$-activated $K^+$ channel blocker, tetrabutylammonium (TBA), a $Ca^{2+}$ channel blocker, nifedipine, $Na^+$ channel blockers, lidocaine and procaine, and removal of extracellular $Na^+$, but not by aminoguanidine, 2-nitro-4-carboxyphenyl-n, n-diphenylcarbamate (NCDC), indomethacin, glibenclamide and clotrimazole. In vivo, infusion of trazodone elicited significant decrease in arterial blood pressure. Trazodone-induced decrease in blood pressure was markedly inhibited by pretreatment of intravenous injection of saponin, L-NNA, methylene blue, TBA, lidocaine or nifedipine. These findings suggest that the endothelium-dependent relaxation and decrease in blood pressure induced by trazodone is mediated by release of NO from the endothelium, activation of TBA-sensitive $Ca^{2+}$-activated $K^+$ channels or inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Role of $Ca^{2+}$ for Inactivation of N-type Calcium Current in Rat Sympathetic Neurons (흰쥐 교감신경 뉴론 N형 칼슘전류의 비활성화에 미치는 칼슘효과)

  • Goo, Yong-Sook;Keith S. Elmslie
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.54-67
    • /
    • 2003
  • The voltage-dependence of N-type calcium current inactivation is U-shaped with the degree of inactivation roughly mirroring inward current. This voltage-dependence has been reported to result from a purely voltage-dependent mechanism. However, $Ca^{2+}$-dependent inactivation of N-channels has also been reported. We have investigated the role of $Ca^{2+}$ in N-channel inactivation by comparing the effects of $Ba^{2+}$and $Ca^{2+}$ on whole-cell N-current in rat superior cervical ganglion neurons. For individual cells in-activation was always larger in $Ca^{2+}$ than in $Ba^{2+}$ even when internal EGTA (11 mM) was replaced with BAPTA (20 mM). The inactivation vs. voltage relationship was U-shaped in both divalent cations. The enhancement of inactivation by $Ca^{2+}$ was inversely related with the magnitude of inactivation in $Ba^{2+}$ as if the mechanisms of inactivation were the same in both $Ba^{2+}$ and $Ca^{2+}$. In support of this idea we could separate fast ( ${\gamma}$ ~150 ms) and slow ( ${\gamma}$ ~ 2500 ms) components of inactivation in both $Ba^{2+}$and $Ca^{2+}$ using 5 sec voltage steps. Differential effects were observed on each component with $Ca^{2+}$ enhancing the magnitude of the fast component and the speed of the slow component. The larger amplitude of fast component indicates that the more channels inactivate via this pathway with $Ca^{2+}$ than with $Ba^{2+}$, but the stable time constants support the idea the fast inactivation mechanism is identical in $Ba^{2+}$and $Ca^{2+}$. The results do not support a $Ca^{2+}$-dependent mechanism for fast inactivation. However, the $Ca^{2+}$-induced acceleration of the slowly inactivating component could result from a $Ca^{2+}$-dependent process.

  • PDF

Calcium Current in the Unfertilized Egg of the Hamster

  • Haan, Jae-Hee;Cho, Soo-Wan;Yang, Young-Sun;Park, Young-Geun;Park, Hong-Gi;Chang, Gyeong-Jae;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.215-224
    • /
    • 1994
  • The presence of a calcium current $(i_{Ca^{2+}})$ passed via a specific channel was examined in the unfertilized hamster egg using the whole-cell voltage clamp technique. Pure inward current was isolated using a $Ca^{2+}-rich$ pipette solution containing 10 mM TEA. This current was independent of external $Na^+$ and was highly sensitive to the $Ca^{2+}$ concentration in the bathing solution, indicating that the inward current is carried by $Ca^{2+}$. The maximal amplitude was $-4.12{\pm}0.58nA\;(n=12)$ with 10mM $Ca^{2+}$ at -3OmV from a holding potential of -8OmV. This current reached its maximum within 20ms beyond -3OmV and decayed rapidly with an inactivation time constant $({\tau})$ of 15ms. Activation and inactivation of this $i_{Ca^{2+}}$ was steeply dependent on the membrane potential. The $i_{Ca^{2+}}$ began to activate at the lower voltage of -55 mV and reached its peak at -35 mV, being completely inactivated at potentials more positive than -40 mV. These result suggest that $i_{Ca^{2+}}$ in hamster eggs passes through channels with electrical properties similar to low voltage-activated T-type channels. Other results from the present study support this suggestion; First, the inhibitory effect of $Ni^{2+}\;(IC_{50}=13.7\;{\mu}M)$ was more potent than $Cd^{2+}\;(IC_{50}=123\;{\mu}M)$. Second, $Ba^{2+}$ conductance was equal to or below that of $Ca^{2+}$. Third, $i_{Ca^{2+}}$ in hamster eggs was relatively insensitive to nifedipine $(IC_{50}=96.6\;{\mu}M)$, known to be a specific t-type blocker. The physiological role of $i_{Ca^{2+}}$ in the unfertilized hamster eggs remains unclear. Analysis from steady-state inactivation activation curves reveals that only a small amount of this current will pass in the voltage range $(-70{\sim}-30\;mV)$ which partially overlaps with the resting membrane potential. This current has the property that it can be easily activated by a weak depolarization, thus it may trigger a certain kind of a intracellular event following fertilization which may cause oscillations in the membrane potential.

  • PDF