• Title/Summary/Keyword: Voltage sag

Search Result 366, Processing Time 0.033 seconds

Calculation of the Area of Severity for Voltage Sag Assessment (순간전압강하 평가를 위한 가혹지역의 계산)

  • Park, Chang-Hyun;Hong, Jun-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1034-1040
    • /
    • 2010
  • This paper presents a calculation method of the area of severity for the stochastic assessment of voltage sags. In general, the annual expected numbers of voltage sags at an individual load point can be estimated stochastically. However, in order to assess the system voltage sag performance considering many sensitive load points together, it is necessary to determine and analysis the area of severity for the load points. The area of severity to voltage sags is the network region where the fault occurrences will simultaneously lead to voltage sags at different load points. In this paper, the concept of the voltage sag assessment and the calculation method of the area of severity are addressed. The analysis of the area of severity is performed on the IEEE 30-bus test system by using the proposed method. The method is useful for the stochastic assesment of voltage sags and the establishment of systematic plans for voltage sag mitigation.

Analysis of inrush current caused by voltage sag in three-phase transformer and induction motor (삼상 변압기와 유도전동기에서의 전압 sag에 의한 들입 전류 분석)

  • Kim, Kyoung-Nam;Ahn, Seon-Ju;Jung, Il-Yop;Moon, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.307-309
    • /
    • 2005
  • This paper studies the effects caused by symmetrical and unsymmetrical voltage sags on three-phase transformer and induction machine. The voltage sag on transformer and induction machine gives rise to inrush current. This inrush current makes sag more severe. These effects depend or many elements such as sag magnitude and duration, type of sag, and fault and recovery voltage instants.

  • PDF

The study on the characteristics of operating limit of low voltage electric machine under the effects of voltage quality (순간전압품질이 저압 전기기기 운전한계에 미치는 특성연구)

  • Park, In-Deok;Jeong, Sung-Won;Gim, Jae-Hyeon;Lee, Geun-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.95-97
    • /
    • 2007
  • This paper studies on operating limit curve of low voltage electric machinery with respect to source voltage variation or sag. Also, it discusses electric machine and compensation equipment design methodology based on voltage quality effect assessment technology. Voltage quality standards, such as SEMI47, CBEMA, ITIC curve are regarded to examine the relation between time constants of load and sagging time of sag generator, the load(low voltage electric machinery) study. Voltage sag characteristics of loads, time constant and sag relation voltage-time operating limits are tested and verified.

  • PDF

The study on the characteristics of operating limit of low voltage electric machine under the effects of voltage quality (전압품질이 저압 전기기기 운전에 미치는 특성연구)

  • Park, In-Deok;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.33-35
    • /
    • 2007
  • This paper studies on operating limit curve of low voltage electric machinery with respect to source voltage variation or sag. Also, it discusses electric machine and compensation equipment design methodology based on voltage quality effect assessment technology. Voltage quality standards, such as SEMI47, CBEMA, ITIC curve are regarded to examine the relation between time constants of load and sagging time of sag generator, the load(low voltage electric machinery) study. Voltage sag characteristics of loads, time constant and sag relation voltage-time operating limits are tested and verified.

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Analysis on Voltage Sag According to Impedance and Application Location of SFCL with Recloser-Recloser Coordination (재폐로차단기간 보호협조 동작시 초전도한류기 적용위치 및 임피던스에 따른 순간저전압 분석)

  • Kim, Yi-Gwan;Noh, Shin-Eui;Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun;Kim, Hye-Rim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.230-236
    • /
    • 2014
  • Superconducting fault current limiter (SFCL) has been expected as one of more effective solutions for decreasing fault current instantaneously and various types of SFCLs have been developed to apply into real power system. Recently, the application of the SFCL in a power distribution system has been reported to be contributed to the suppression of the voltage sag as well as the limitation of the fault current. However, the suppressing effect of voltage sag by the SFCL depends on component of its impedance and its application location in a power distribution system considering the recloser-recloser coordination. This paper analyzed the voltage sag caused by recloser-recloser coordination in a power distribution system and the suppression of the voltage sag due to the application location of the SFCL in a power distribution system was discussed through the PSCAD/EMTDC simulation.

Analysis of voltage sag effect at load side during fault according to change of power system condition (계통조건(系統條件) 변경(變更)에 따른 고장시(故障時) 부하측(負荷側)의 순간전압강하(瞬間電壓降下) 영향분석(影響分析))

  • Yoon, Gi-Seob;Baik, Seung-Do;Gu, Sung-Wan;Lee, Chong-Soo;Lee, Hong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.156-158
    • /
    • 2002
  • In this paper, we analyze about voltage sag effect at load side during fault according to change of power system condition. through the case studies, we find that there is no close connection between substation bus transfer and voltage sag during fault. however, we find that other feeder connecting with the faulted transmission is directly affected by fault type and magnitude, therefore, the main subject can be divided into the utility and customer side countermeasures, utilities concentrate their effort to prevent the faults and to modify the fault clearing practice in power system. however, the faults in power system can never be completely eliminated. therefore, customer side solutions usually involve the power conditioning equipment for sensitive loads aiso, we investigate that the several methods to reduce the number and severity of voltage sag and to dull the sensitivity of equipment for voltage sag have developed. moreover, about SEMI, the industry association for the semiconductor two voltage sag immunity standards.(SEMI F47, SEMI F42) The simulation is accomplished by PSS/E 26.

  • PDF

Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils (병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Analysis of Bus Voltage Sag Caused by Recloser-Fuse Coordination in a Power Distribution System with SFCL (배전계통에서 리클로져-퓨즈 협조동작시 초전도한류기 적용에 의한 순간전압강하 분석에 관한 연구)

  • Kim, Myoung-Hoo;Kim, Jin-Seok;You, Il-Kyoung;Wang, Soon-Wook;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This paper analyzed bus voltage sag caused by recloser-fuse coordination in a power distribution system with SFCL. Generally, the recloser is installed to upstream of fuse to clear against both permanent and temporary faults appropriately, when the fault happened and to block expansion of the fault area. Furthermore, when the fault occurred, bus voltage sag is caused by increased fault currents. However, in a power distribution system with SFCL, the fault current could be decreased by the effect of the impedance value of the SFCL and place to install one as long as it could improve bus voltage sag. Therefore, to analyze the effect of the improvement of bus voltage sag caused by recloser-fuse coordination in a power distribution system with SFCL, we used PSCAD/EMTDC about a permanent fault at the place behind the fuse.