• Title/Summary/Keyword: Voltage quality control

Search Result 459, Processing Time 0.031 seconds

Comparison of Multilevel Inverters Employing DC Voltage Sources Scaled in the Power of Three

  • Hyun, Seok-Hwan;Kwon, Cheol-Soon;Kim, Kwang-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.457-463
    • /
    • 2012
  • Cascaded H-bridge multilevel inverters shows a useful circuit configuration to increase the number of output voltage levels to obtain high quality output voltage. By applying the concept of the power of three to dc voltage sources, it can increase the number of output voltage levels effectively. To realize this concept, two approaches may be considered. One is to use independent dc voltage sources pre-scaled in the power of three, and the other is to use instantaneous dc voltage sources generated from a cascaded transformer, which has the secondary turn-ratios scaled in the power of three in sequence. A common feature in both approaches is to use the concept of the power of three for dc voltage sources, and a point of difference is whether it adopts a low frequency transformer or not, and where the transformer is located. According to the difference, application areas are limited and show different characteristics on THD of output voltages. We compare and analyze both approaches for their circuit configurations, voltage level generating method, THD characteristics of output voltage, efficiency, application areas, limitations, and other characteristics by experiments using 500 [W] prototypes when they generate a 27-level output voltage.

Power Quality Impacts of an Electric Arc Furnace and Its Compensation

  • Esfandiari Ahmad;Parniani Mostafa;Mokhtari Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.153-160
    • /
    • 2006
  • This paper presents a new compensating system, which consists of a shunt active filter and passive components for mitigating voltage and current disturbances arising from an Electric Arc Furnace (EAF). A novel control strategy is presented for the shunt active filter. An extended method based on instantaneous power theory in a rotating reference frame is developed for extraction of compensating signals. Since voltages at the point of common coupling contain low frequency interharmonics, conventional methods cannot be used for dc voltage regulation. Therefore, a new method is introduced for this purpose. The passive components limit the fast variations of load currents and mitigate voltage notching at the Point of Common Coupling (PCC). A three-phase electric arc furnace model is used to show power quality improvement through reactive power and harmonic compensation by a shunt active filter using the proposed control method. The system performance is investigated by simulation, which shows improvement in power quality indices such as flicker severity index.

Voltage sag compensator of a high and precise quality for unbalanced three phase power system

  • Park, Hyen-Young;Oh, Se-Ho;Lee, Kyo-Sung;Kim, Do-Hun;Kim, Yang-mo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1394-1397
    • /
    • 2002
  • High electronic equipments for demand improvement and efficiency are requested the power superior quality. The compensation system of power quality is processing actively. We propose to a series voltage compensator and control algorithm using pid control in unbalanced three- phase power system when voltage sag occurs.

  • PDF

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

RF Generator Design for High-quality Power at Light Load

  • Hee Sung Shin;Shin Ui Lee;Kyung Hyun Lim;Euihoon Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2024
  • To generate the plasma required in dry cleaning processes, the plasma chamber must be supplied with a high-quality AC voltage with a voltage of more than 1 kV and a frequency of 400 kHz. In the existing research, many methods to supply high power have been studied, but how to improve the quality of the power for high-quality plasma has been relatively little studied. In this paper, we propose a study to improve the quality of RF power circuit for high-quality plasma generation in dry cleaning method. Existing methods in the environment of full-bridge-based RF power circuits must perform PWM duty control in the light load region. This causes distortions in the waveform, resulting in poor power quality, which directly leads to poor plasma quality. To solve these problems, a half-bridge switching method is proposed and the improvement in waveform quality is verified. To verify the feasibility of the design and control algorithm proposed in this paper, an RF power circuit prototype is fabricated and the proposed design and control method is verified through simulation and actual experiments under dummy load.

  • PDF

PQ Control of Micro Grid Inverters with Axial Voltage Regulators

  • Chen, Yang;Zhao, Jinbin;Qu, Keqing;Li, Fen
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1601-1608
    • /
    • 2015
  • This paper presents a PQ control strategy for micro grid inverters with axial voltage regulators. The inverter works in the voltage-controlled mode and can help improve the terminal power quality. The inverter has two axial voltage regulators. The 1st regulator involves the output voltage amplitude and output impedance, while the 2nd regulator controls the output frequency. The inverter system is equivalent to a controllable voltage source with a controllable inner output impedance. The basic PQ control for micro grid inverters is easy to accomplish. The output active and reactive powers can be decoupled well by controlling the two axial voltages. The 1st axial voltage regulator controls the reactive power, while the 2nd regulator controls the active power. The paper analyses the axial voltage regulation mechanism, and evaluates the PQ decoupling effect mathematically. The effectiveness of the proposed control strategy is validated by simulation and experimental results.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

Gird-interactive Current Controlled Voltage Source Inverter System with UPS (UPS를 고려한 계통연계 전류제어형 전압원 인버터)

  • Ko, Sung-Hun;Lim, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1064-1070
    • /
    • 2007
  • This paper presents a grid-interactive current controlled voltage source inverter (CCVSI) with uniterruptible power supply (UPS), which uses an inner current control loop (polarized ramp time (PRT)) and outer feedback control loops to improve grid power quality and UPS. To reduce the complexity, cost and number of power conversions, which results in higher efficiency, a single stage CCVSI is used. The operation of this system could be divided into the power quality control (PQC) state mode and the UPS state mode. In PQC mode, the system operated to compensate the reactive power demand by nonlinear load or variation in load. In UPS mode. the system is controlled to provide a sinusoidal voltage at the rated value for the load when the gird fail. To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results for 1KVA load capacity is presented.