• Title/Summary/Keyword: Voltage quality

Search Result 1,545, Processing Time 0.029 seconds

Characteristic Analysis of Voltage Sags Due to Faulted Distribution Lines (배전선로 고장에 의한 Voltage Sag의 특성 해석)

  • ;Madhat M. Morcos
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.76-84
    • /
    • 2002
  • Voltage sags caused by line faults in transmission and distribution lines have become one of the most important power quality problems facing industrial customers and utilities. Voltage sags are normally described by characteristics of both magnitude and duration, but phase angle shifts should be taken account in identifying sag phenomena and finding their solutions. In this paper, voltage sags due to line faults such as three phase-to-ground, single line-to-ground, and line-to-line faults are characterized by using symmetrical component analysis, for fault impedance variations. Voltage sags and their effect on the magnitude and phase angle are examined. Balanced sags of three phase-to-ground faults show that voltages and currents are changed with equivalent levels to all phases and the zero sequence components become zero. However, for unbalanced faults such as single line-to-ground and line-to-line faults, voltage sags give different magnitude variations and phase angle shifts for each phase. In order to verify the analyzed results, some simulations based on power circuit models are also discussed.

The Direction of Power Quality Analysis Technology (전기품질 진단기술의 방향)

  • Kang, Chang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.16-18
    • /
    • 2005
  • Becoming more and more diversified and complicated, power quality management has focused on the electricity-failure duration(including the numbers), the appropriate rate of voltage(average voltage during 30 minutes), the stability rate of frequency etc. as a basic goal value. And recently the focus is moving into the instantaneous minute interruption factors such as voltage & current harmonics, surge occurring frequency, instantaneous voltage variation, voltage unbalance, instantaneous electricity failure, flicker etc. by the development of electricity & electronics and communication equipments, which had not been so big problems before. This paper will address the flow of analysis technology and forecast the desirable direction of power quality analysis technology in the future.

  • PDF

A study on Voltage Sag Detection of Power Quality Compensator (전력품질 보상장치의 순간전압강하에 관한 연구)

  • Lee jae-young;Lee won-sun;Han Woon-Dong;Jeon hee-jong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.760-763
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic, and medical devices sensitive to power quality has caused many power quality problems and power supply-and-demand problem. Recently, in power system not only the reliability of the power supply but also the DVR(Dynamic Voltage Restorer), UPS, and APF are being studied more and more. Hence, in this paper, Voltage sag detection algorithm for voltage sag corrector is proposed. Also, simple circuit for the experimental voltage sag is Introduced.

  • PDF

A Comparative Analysis of Voltage Sag Detecting Techniques for Dynamic Voltage Restorer (동적전압보상기(DVR)를 구성하기 위한 순시전압강하의 검출기법 비교)

  • Shon, Jin-Geun;Suk, Won-Yeob;Park, Jong-Chan;Na, Chae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.10-13
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic devices sensitive to power quality has caused many power quality problems. Dynamic voltage restorers(DVR) are known as the best effective and economic means to compensate for power quality problems(especially, voltage sag and sewll). In this paper, we adresses the detecting algorithsms and implementation techniques of an voltage sag for operating DVR.

  • PDF

Dynamic Voltage Restorers using Improved Voltage Sag and Phase Detection Algorithm (개선된 전압 Sag 및 위상 검출기법에 의한 동적전압보상시스템)

  • Lee, J.Y.;Han, W.D.;Song, Y.H.;Son, J.G.;Joen, H.J.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.185-188
    • /
    • 2005
  • The recent growth in the use of impactive and nonlinear loads, electronic devices sensitive to power quality has caused many power quality problems. Dynamic voltage restorers(DVR) are known as the best effective and economic means to compensate for power quality problems(especially, voltage sag and swell). In this paper, we addresses the detecting algorithms of an voltage sag and phase for operating DVR. Experimental results are included to illustrate the efficacy of the proposed algorithm.

  • PDF

Voltage Quality Improvement with Neural Network-Based Interline Dynamic Voltage Restorer

  • Aali, Seyedreza;Nazarpour, Daryoush
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.769-775
    • /
    • 2011
  • Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are used to improve the power quality in distribution systems. These devices require real power to compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as improvement of dynamic performance. Three multilayer perceptron neural networks are used to identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains this type of network. The proposed controller provides optimal mitigation of voltage dynamic. Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast response with lower total harmonic distortion.

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

A Dynamic Characteristics on Non-linear Voltage Electric Equipment under Voltage Sag (순간전압강하에 대한 비선형 저압전기기기의 동적특성)

  • Lee, Hyun-Chul;Jeong, Sung-Won;Gim, Jae-Hyeon;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • In this study, a transition of power quality was characterized by non-linear voltage electric equipments under voltage sag. The test was inputted voltage sag to IPC(Sag Generator) from AVR, and then to equipments by IPC which adjust voltage magnitude and duration. The load test which non-linear voltage electric equipments used PLC, Magnetic Contactor, SMPS, HID Lamp. The test result was different from each other according to a manufacturing companys, models, and equipments. PLC was greatly described to be stabilized voltage sag in case of no load then rated load. Magnetic Contactor was made a difference to phase angles on voltage sag, which was $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. HPD Lamp was described to be stabilized the sodium lamp, and to be unstabilized the metal hailed lamp. The test result was showed CBEMA curve that stand for evaluated responsiveness of voltage sag. This study was tested description to dynamic characteristics on non-linear voltage electric equipment under voltage sag. There was hoped that power system designed the essential particulars.

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Fast Envelope Estimation Technique for Monitoring Voltage Fluctuations

  • Marei, Mostafa I.;Shatshat, Ramadan El
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • Voltage quality problems such as voltage sag, swell, flicker, undervoltage, and overvoltage have been of great concern for both utilities and customers over the last decade. In this paper, a new approach based on the $H_{\infty}$ algorithm to monitor voltage disturbances is presented. The key idea of this approach is to estimate the amplitude of the fundamental component of distorted and noisy voltage waveform instantaneously, and then the information can be extracted from the estimated envelope to identify and classify different voltage related power quality problems. The $H_{\infty}$ algorithm is characterized by a fast tracking, unlike that of existing techniques. The $H_{\infty}$ algorithm outperforms the Kalman Filter (KF) by its fast convergence and robust tracking performance against non-Gaussian noise. The paper investigates the effects of various types of noise on the performance of the $H_{\infty}$ algorithm. Digital simulation results confirm the validity and accuracy of the proposed method. The proposed $H_{\infty}$ algorithm is examined by tracking the flicker produced by a resistance welder simulated in the PSCAD/EMTDC package.