• Title/Summary/Keyword: Voltage quality

Search Result 1,545, Processing Time 0.03 seconds

A Study on Reducing of Entrance Surface Dose with the Eye in the Computed Radiography by Using High Kilo Voltage Peak Technique (컴퓨터 방사선영상에서 고 관전압 기법을 이용한 안구 입사표면선량 감소에 관한 연구)

  • Seoung, Youl-Hun;Rhim, Jea-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • The purpose of this study was to minimize of entrance surface dose (ESD) at the eye using high kVp technique in the computed radiography. We used REX-650R (Listem, Korea) general X-ray unit, and external detector with ESD dosimeter of Piranha 657 (RTI Electronics, Sweden). We used head of the whole body phantom. The total 64 images of X-ray anterior-posterior of skull were acquired using the film/screen (F/S) method and the digital of computed radiography method. The three radiology professor of more 10 years of clinical career evaluated a X-rays images in the same space by 5-point scale. The external detector was performed measurement of ESD of three times by same condition on the eye of the head phantom. The good image quality in the F/S method (90 kVp, 2.5 mAs) showed at the minimized ESD of 0.310 ${\pm}$ 0.001 mGy. the good image quality in the computed radiography method (90 kVp, 2.0 mAs) showed at the minimized ESD of 0.180 ${\pm}$ 0.002 mGy (P = 0.002). Finally the radiation dose could reduced about 50% in the computed radiography method more than the F/S method. In addition the eye entrance surface dose using high kVp technique with the computed radiography was reduced 92% more than conventional technique (F/S method).

Novel Activation by Electrochemical Potentiostatic Method

  • Lee, Hak-Hyeong;Lee, Jun-Gi;Jeong, Dong-Ryeol;Gwon, Gwang-U;Kim, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

Performance Analysis of load simulator interconnected with Power Quality Compensator (전력품질 보상기와 부하모의장치의 연계시험 분석)

  • Bae, Byung-Yeol;Cho, Yun-Ho;Park, Yong-Hee;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper describes a load simulator with power recovery capability, which is based on the voltage source converter-inverter set. The load simulator can save the electric energy that should be consumed to test the operation and performance of the power quality compensator and the power equipment. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. the performance of proposed load simulator was analyzed with scaled-model experiment, interconnected with the active power filter. The experimental results confirms that the proposed load simulator can be utilized to test the performance of active power filter.

A Study on Power Factor Control of Inverter-based DG System with Considering the Capacity of an Active Harmonic Filter and an Inverter (고조파 필터 및 인버터의 용량을 고려한 분산전원 시스템의 역률 제어에 관한 연구)

  • Kim, Young-Jin;Hwang, Pyeong-Ik;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2149-2154
    • /
    • 2009
  • Electric power quality in power transmission/distribution systems has considerably been deteriorated with the increase in the capacity of distributed generators (DGs). It is because inverters, connecting DGs to conventional power grids, tend to generate harmonic current and voltage. For harmonic mitigation, a large amount of research has been done on passive and active filters, which have been operating successfully in many countries. This paper, therefore, presents how to adopt the filters to an inverter-based DG, with considering a system consisting of both inverter-based DG and harmonic filters. In particular, this paper describes the simulation results using the PSCAD/EMTDC: firstly, the relationship between total harmonic distortion(THD) of current and output power of DG: secondly, the harmonic mitigation ability of passive and active filters. The system, furthermore, is obliged to satisfy the regulations made by Korean Electric Power Corporation(KEPCO). In the regulations, power factor should be maintained between 0.9 and 1 in a grid-connected mode. Thus, this paper suggests two methods for the system to control its power factor. First, the inverter of DG should control power factor rather than an active filter because it brings dramatic decrease in the capacity of the active filter. Second, DG should absorb reactive power only in the range of low output power in order to prevent useless capacity increase of the inverter. This method is expected to result in the variable power factor of the system according to its output power.

A Study on the Chest Indirect Radiography (흉부X선 간접촬영의 촬영조건과 화질에 관한 조사연구)

  • Kim, Hark-Sung;Lee, In-Ja;Kim, Sung-Soo;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2003
  • chest Indirect radiography were taken at 44 medical facilities in Seoul area. The results were as follows: 1. The average tube voltage was 98.2 kVp in case of 100 mm film and 91.3 kVp in case of 70 mm film. 2. The average tube current was 18.1 mAs in case of 100 mm film and 42.5 mAs in case of 70 mm film. 3. In the physical evaluation of chest Indirect radiographs, the density in case of 100 mm film was similar to that in case of 70 mm film. 4. In the visual evaluation of chest Indirect radiographs, the score of identification in case of 100 mm film was higher than that in case of 70 mm film. 5. The average dose of radiation into the skin was 1.38 mGy in case of 100mm film and 4.59 mGy in case of 70 mm film. In conclusion, the image quality of chests was excellent and the dose of radiation into the skin decreased in case of 100 mm film.

  • PDF

Power Monitoring System with Multiple Input Channels Using the Definition of IEEE Standard 1459-2010 (IEEE 1459-2010 규격의 정의를 이용한 다중 입력 채널을 갖는 전력 감시 시스템)

  • Jeon, Jeong-Chay;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3100-3106
    • /
    • 2014
  • This paper develops power measurement system with multiple sensor input channels (voltage-8 channels and current-10 channels) that simultaneously can monitor power components for both supply and load side of power system. The hardware implementation of the proposed system is based on TMS320C42 DSP and signal processing program algorithm to calculate power components use the definition of IEEE Standard 1459-2010 related power quality. The performance of the developed system is tested by using standard ac power source device, and the test results showed that accuracy of the developed system is less than 0.2 %. Also, field test of the proposed system in the three-phase and four-wire power system was implemented. Simultaneous multiple channel measurement and analysis of power components in commercial and industrial electrical power system using the proposed system will be necessary to reduce power quality problems.

Improvement of Reception Noise During Formation Flight of Aircraft (항공기 편대 비행 중 수신 잡음 개선 연구)

  • Kwon, Jung-Hyuk;Seo, Hong-Eun;Lee, Wang-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.497-504
    • /
    • 2021
  • This paper presents improvement of the reception noise suppression method during formation flights of aircraft. Since aircraft communication equipment is very important for flight mission and safety to perform the functions of internal/external communications, it is required to implement noise-free, clean communication quality, and transmitting/receiving functions. Therefore, the FTA (Fault Tree Analysis) analysis and failure search were performed on the reception noise, and the internal noise of the intercom that affected the reception noise and the none-transmition phenomenon was identified. We changed the multiple grounds of the intercom to a single ground and applied an improved method of filtering the DC Offset voltage. As a result, the voice quality of the communication system of the aircraft was improved through the reduction of the reception noise during formation flights, and it was verified by ground and flight tests.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System (실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.