• Title/Summary/Keyword: Voltage phase

Search Result 4,306, Processing Time 0.025 seconds

Reduction of Output Voltage Ripples in Single-Phase PWM Rectifier with Active Power Decoupling Circuit

  • Nguyen, Hoang-Vu;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.419-420
    • /
    • 2015
  • In this paper, a low-cost single-phase PWM rectifier with small DC-link capacitors is proposed, where a buck-boost converter with a low power rating is added at the DC link. By controlling the auxiliary circuit so as to absorb the voltage ripple in the DC link, the second-order voltage ripple in DC-link capacitor can be reduced significantly. Therefore, a small film capacitor can be utilized to replace the bulky electrolytic capacitors. The simulation results are shown to verify the validity of the proposed method.

  • PDF

The Ozone Generation and Discharge Noise Characteristics of Superposed Discharge Noise Characteristics of Superposed Discharge Type Ozonizer Using Three-Phase Voltage (3상 전압을 사용한 중첩방전형 오존발생기의 오존생성 및 방전잡음특성)

  • 전병준;송현직;김영훈;최상태;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2000
  • In this paper, an ozonizer, which can supply individual and superposed silent discharge using three-phase voltage has been designed and manufactured. The ozonizer consists of 3 electrodes(Central Electrode, Internal Electrode and External Electrode and External electrode) and 2 gaps (gap between Central Electrode and Internal Electrode, gap between Internal Electrode and External Electrode). Ozone is generated according to voltage supplying method to each electrode by individual silent discharge and three-phase superposed discharge. The characteristics of ozone generation were investigated with variation of discharge power and the flow rate of supplied gas (O2). In case of individual silent discharge, the maximum values of ozone concentration, ozone generation and ozone yield were obtained between internal electrode and external electrode, and its values were 2300[ppm], 570[mg/h] and 745[g/kWh] respectively. Each maximum value was 5039[ppm], 1773[mg/h] and 851[g/kWh] respectively, when three-phase superposed silent discharge was employed. Therefore, characteristics of ozone generation with three-phase voltage are improved compared with single-phase voltage because silent discharge is generated continuously.

  • PDF

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part II : Simulation and Experimental Results

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this paper, the power conditioner composed of the stand-alone single-phase squirrel cage rotor type self-excited induction generator (SEIG) driven by prime movers such as a wind turbine and a micro gas turbine (MGT) is presented by using the steady-state circuit analysis based on the two nodal admittance approaches using the per-unit frequency in addition to a new state variable defined by the per-unit slip frequency along with its performance evaluations for the stand-alone energy utilizations. The stande-alone single-phase SEIG operating performances in unregulated voltage control loop are then evaluated on line under the conditions of the speed change transients of the prime mover and the stand-alone electrical passive load power variations with the simple theoretical analysis and the efficient computation processing procedures described in the part I of this paper. In addition, a feasuible PI controlled feedback closed-loop voltage regulation scheme of the stande-alone single-phase SEIG is designed on the basis of the static VAR compensate. (SVC) and discussed in experiment for the promising stand-alone power conditioner. The experimental operating performance results are illustrated and give good agreements with the simulation ones. The simulation and experimental results of the stand-alone single-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvements.

Dead Time Compensation Algorithm for the 3-Phase Inverter using SVPWM (SVPWM 방식의 3상 인버터에 대한 간단한 데드타임 보상 알고리즘)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.610-617
    • /
    • 2011
  • This paper proposes a novel and direct dead-time compensation method of the 3-phase inverter using space vector pulse width modulation(SVPWM) topology. The proposed dead-time compensation method directly compensates the dead-time to the turn-on time of the effective voltage vector according to the current direction of the medium voltage reference. Each phase voltages are determined by the switching times of the effective voltage vectors, and the practical switching times have loss according to the current direction by the dead-time effect in the 3-phase inverter. The proposed method adds the dead-time to the switching time of the effective voltage vector according to the current direction, so it does not require complex d-q transform and controller to compensate the voltage error. The proposed dead-time compensation scheme is verified by the computer simulation and experiments of 3-phase R-L load.

A Study on the Synchronization Methodology for Grid-connection of Three Phase Inverter (3상 인버터의 계통 연계를 위한 동기화 방법론에 대한 연구)

  • Lim, Byeong-Seok;Lee, Joon-Seong;Nguyen, Hoang-Nhan;Tran, Van-Thanh;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.951-958
    • /
    • 2019
  • For the power grid-connection of distributed generation, the output voltage of the distributed generation must be synchronized with the grid voltage before the grid-connection. In this paper, a vector control based synchronization algorithm was developed for grid linkage of three-phase inverters. A three-phase voltage inverter was designed and fabricated to verify the effectiveness of the developed algorithm. The main controller of the three-phase inverter was developed based on DSP, and the electrical level of the system was set to an electrical level that can be tested in the laboratory. Throughout the experiments, it was confirmed that the proposed algorithm could be used as a synchronization algorithm for grid-connection by showing that the output voltage of the three-phase inverter is synchronized with the grid voltage.

Design Methodology for Optimal Phase-Shift Modulation of Non-Inverting Buck-Boost Converters

  • Shi, Bingqing;Zhao, Zhengming;Li, Kai;Feng, Gaohui;Ji, Shiqi;Zhou, Jiayue
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1108-1121
    • /
    • 2019
  • The non-inverting buck-boost converter (NIBB) is a step-up and step-down DC-DC converter suitable for wide-input-voltage-range applications. However, when the input voltage is close to the output voltage, the NIBB needs to operate in the buck-boost mode, causing a significant efficiency reduction since all four switches operates in the PWM mode. Considering both the current stress limitation and the efficiency optimization, a novel design methodology for the optimal phase-shift modulation of a NIBB in the buck-boost mode is proposed in this paper. Since the four switches in the NIBB form two bridges, the shifted phase between the two bridges can serve as an extra degree of freedom for performance optimization. With general phase-shift modulation, the analytic current expressions for every duty ratio, shifted phase and input voltage are derived. Then with the two key factors in the NIBB, the converter efficiency and the switch current stress, taken into account, an objective function with constraints is derived. By optimizing the derived objective function over the full input voltage range, an offline design methodology for the optimal modulation scheme is proposed for efficiency optimization on the premise of current stress limitation. Finally, the designed optimal modulation scheme is implemented on a DSPs and the design methodology is verified with experimental results on a 300V-1.5kW NIBB prototype.

Single Phase Grid Connected Voltage-ed Inverter Utilizing a Power Decoupling Function (전력 디커플링 기능을 가진 단상 계통연계 전압형 인버터)

  • Lee, Sang-Wook;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.236-241
    • /
    • 2017
  • This paper presents a single-phase grid connected voltage-ed inverter with a power decoupling circuit. In the single-phase grid connected voltage-ed inverter, it is well known that a power pulsation with twice the grid frequency is contained in the input power. In a conventional voltage type inverter, electrolytic capacitors with large capacitance have been used in order to smooth the DC voltage. However, lifetime of those capacitors is shortened by the power pulsation with twice grid frequency. The authors have been studied a active power decoupling(APD) method that reduce the pulsating power on the input DC bus line, this enables to transfer the ripple energy appeared on the input DC capacitors into the energy in a small film capacitor on the additional circuit. Hence, extension of the lifetime of the inverter can be expected because the small film capacitor substitutes for the large electrolytic capacitors. Finally, simulation and experimental results are discussed.

Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load (불평형부하 시 독립형 인버터의 데드타임 보상기법)

  • Jeong, Jinyong;Jo, Jongmin;Lee, Junwon;Chae, Woo-Kyu;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.

Novel Five-Level Three-Phase Hybrid-Clamped Converter with Reduced Components

  • Chen, Bin;Yao, Wenxi;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1119-1129
    • /
    • 2014
  • This study proposes a novel five-level three-phase hybrid-clamped converter composed of only six switches and one flying capacitor (FC) per phase. The capacitor-voltage-drift phenomenon of the converter under the classical sinusoidal pulse width modulation (SPWM) strategy is comprehensively analyzed. The average current, which flows into the FC, is a function of power factor and modulation index and does not remain at zero. Thus, a specific modulation strategy based on space vector modulation (SVM) is developed to balance the voltage of DC-link and FCs by injecting a common-mode voltage. This strategy applies the five-segment method to synthesize the voltage vector, such that switching losses are reduced while optional vector sequences are increased. The best vector sequence is then selected on the basis of the minimized cost function to suppress the divergence of the capacitor voltage. This study further proposes a startup method that charges the DC-link and FCs without any additional circuits. Simulation and experimental results verify the validity of the proposed converter, modulation strategy, and precharge method.

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.