• Title/Summary/Keyword: Voltage phase

Search Result 4,306, Processing Time 0.032 seconds

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

Input Voltage Sensorless Control for 3 Phase Vienna Rectifier (3상 비엔나 정류기 입력 전압 센서리스 제어)

  • Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Hwang, Soon-Sang;Yoon, Byung-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • In this paper, a new grid voltage estimation algorithm without voltage sensors is proposed for the three-phase vienna rectifier. Generally, input voltage sensor circuits increase size and cost of the PWM rectifier In order to reduce the cost and size and in order to increase reliability from the electrical noise, grid voltage estimation scheme without input voltage sensor is highly required. In this paper, the grid voltage estimation algorithm is proposed by a simple MRAS(Model Reference Adaptive System) observer without input voltage sensors. The validity of the proposed method is proven by simulation and experiment on the three-phase vienna rectifier system.

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

Characteristics of Voltage Sag/Swell Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Tsurusaki, Yu;Ikeda, Minoru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.447-453
    • /
    • 2013
  • Compensating characteristics of a voltage sag/swell compensator utilizing single-phase matrix converter is examined. First, system configuration and operation for both voltage sag and swell are described. Next, in order to suppress pulsations of the source voltage, a countermeasure using low pass filter and all pass filter is introduced. Then, compensating characteristics of the compensator are investigated for R-L load by simulation. Finally, the validity of the simulated results is confirmed by the experimental results.

Single-Phase Impedance-Source Dynamic Voltage Restorer (단상 임피던스-소스 동적 전압 보상기)

  • Park, H.J.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.458-461
    • /
    • 2008
  • This paper deals with a single-phase impedance-source dynamic voltage restorer (Impedance-DVR) to mitigate voltage sag/swell for the critical loads. The proposed system is composed of passive filter and impedance-source topology inverter. As an ESS(Energy Storage System) of the proposed system is employed the Proton Exchange Membrane Fuel Cells (PEMFC). To calculate and control the compensation voltage, single-phase $^id-^iq$ theory in dq rotating reference frame and PI controller are used. Simulation results under voltage sag and swell are presented to show the performance.

  • PDF

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불형전원에서의 입력전류 특성)

  • 정승기;이동기;박기원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.38-38
    • /
    • 2001
  • The three-phase diode rectifier with capacitive filter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics, small line voltage unbalance may cause highly unbalanced line current, causing detrimental effects on power quality. This paper presents a theoretical basis on this ′unbalance amplification effect′ and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

Measurement and Control of the Resonance Frequency for the Transcutaneous Energy Transmission System (TET) Using the Phase Locked Loop Circuit (PLL) (PLL을 이용한 무선 전력전송 장치의 공진 주파수의 계측 및 주파수 제어)

  • Choi, S.W.;Shim, E.B.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1613-1616
    • /
    • 2008
  • A Transcutaneous Energy Transmission System (TET) has been developed for the wireless energy transmission with two magnetically coupled coils. A resonance circuit is used to raise the induced voltage and current of the secondary coil. Its resonance frequency depends on the internal resistance of circuit and the transferred energy. Because the transferred energy usually changes in wide range, the output voltage is unstable and the energy transferring efficiency decrease. A push-pull class E amplifier is usedto generate high frequency AC voltage. To maintain proper resonance frequency, the voltage output of the amplifier was continuously monitored and adjusted to the optimized resonance frequency. Because of its high frequency (370 kHz), a phase lockedloop circuit and a comparator are used to monitor the output waveform. The results of experimentaldata show that the PLL circuit can increase the transmission efficiency and stabilize the output voltage of TET.

  • PDF

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

Static Overmodulation Strategies of Two Phase Full Bridge Inverter (2상 풀브릿지 인버터의 정적 과변조 기법)

  • Choi, Seung-Cheol;Kim, Young-Ki;Kim, Sang-Hoon;Kim, Hyeong-Cheol;Mok, Hyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.45-46
    • /
    • 2010
  • In this paper, the static overmodulation is proposed for the 2-phase full bridge inverter. The overmodulation strategy increases a fundamental output voltage and improves a voltage utilization up to the maximum in the overmodulation range. To maintain a linearity of the relation between a reference voltage and a fundamental output voltage, this paper suggests a compensation voltage, whose magnitude or phase is modified to the proposed control scheme. Simulation and experimentation results demonstrate the effectiveness of the proposed algorithms.

  • PDF