• Title/Summary/Keyword: Voltage inverter

Search Result 2,922, Processing Time 0.028 seconds

Pulse Width and Pulse Frequency Modulated Soft Commutation Inverter Type AC-DC Power Converter with Lowered Utility 200V AC Grid Side Harmonic Current Components

  • Matsushige T.;Ishitobi M.;Nakaoka M.;Bessyo D.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.484-488
    • /
    • 2001
  • The grid voltage of commercial utility power source hi Japan and USA is 100rms, but in China and European countries, it is 200rms. In recent years, In Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100Vrms utility AC power applications and systems, an active voltage clamped quasi-resonant Inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency Inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching Inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant Inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull type Inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components In the utility AC power side of the AC-DC power converter operating at ZVS­PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  • PDF

A Study on the Voltage Control of a Single Phase Full-bridge Inverter using SPWM Driving Method (SPWM 구동 방식을 이용한 단상 풀 브리지 인버터의 전압 제어에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.851-858
    • /
    • 2017
  • In this study, the voltage control system of a single phase full bridge inverter was designed based on the SPWM driving method. The voltage control system consists of a single-phase full-bridge inverter, a PI controller for linearly compensating the error between the reference voltage and the output voltage, a PWM driving circuit for generating the gate signal using the SPWM method from the controller signal, and an LC filter for filtering the inverter output voltage waveform into sinusoidal waveform. Finally, the voltage control system of a single-phase full-bridge inverter based on the PWM driving method was modeled using EMTP-RV and by showing that the output voltage accurately converges the reference voltage through several simulation examples, the validity of the control system design was verified.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverter at Low Modulation Index

  • C.S. Ma;Kim, T.J.;D.W. Kang;D.S. Hyun
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM (DPWM) to balance the DC-link voltage of three-level neutral-point-clamped (NPC) inverter at low modulation index. It introduces new DPWM methods in multi-level inverter and one of them is used for balancing the DC-link voltage. The current flowing in the neutral point of the DC-link causes the fluctuation of the DC-link voltage of the NPC inverter. The proposed DPWM method changes the path and duration time of the neutral point current, which makes the overall fluctuation of the DC-link voltage zero during a sampling time of the reference voltage vector. Therefore, by using the proposed strategy, the voltage of the DC-link can be balanced fairly well and the voltage ripple of the DC-link is also reduced significantly. Moreover, comparing with conventional methods which have to perform the complicated calculation, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by the experiment.

Common-Mode Voltage Elimination with an Auxiliary Half-Bridge Circuit for Five-Level Active NPC Inverters

  • Le, Quoc Anh;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.923-932
    • /
    • 2017
  • This paper proposes a novel scheme which can compensate the common-mode voltage (CMV) for five-level active neutralpoint clamped (5L-ANPC) inverters, which is based on modifying the space vector pulse width modulation (SVPWM) and adding an auxiliary leg to the inverter. For the modified SVPWM, only the 55 voltage vectors producing low CMV values among the 125 possible voltage vectors are utilized, which varies over the three voltage levels of $-V_{dc}/12$, 0 V, and $V_{dc}/12$. In addition, the compensating voltage, which is injected into the 5L-ANPC inverter system to cancel the remaining CVM through a common-mode transformer (CMT) is generated by the additional NPC leg. By the proposed method, the CMV of the inverter is fully eliminated, while the utilization of the DC-link voltage is not decreased at all. Furthermore, all of the DC-link and flying capacitor voltages of the inverter are well controlled. Simulation and experimental results have verified the validity of the proposed scheme.

Three Phase Three-Level Switched Voltage Source PWM Inverter with Zero Neutral Point Potential (영 전위 중성점을 가진 새로운 3상 Three-Level 스위치 전압원 인버터)

  • Oh Won-Sik;Han Sang-Kyoo;Choi Seong-Wook;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.630-634
    • /
    • 2004
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. The major advantage is that the peak value of the phase output voltage is twice as high as that of the conventional neutral-point-clamped (NPC) PWM inverter. Furthermore, three-level waveforms of the proposed inverter can be achieved without switch voltage unbalance problem. Since the average neutral point potential of the proposed inverter is zero, the common ground between input stage and output stage is possible. The proposed inverter is verified by experimental results based on a laboratory prototype.

  • PDF

The Carrier-based SVPWM method for voltage balance of flying capacitor multilevel inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시티 잔압 균형을 위한 캐리어 비교방식의 펄스 폭 변조 기법)

  • 강대욱
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.313-316
    • /
    • 2000
  • This paper proposes a new solution by carrier-based SVPWM method to solve the most serious problem of Flying Capacitor Multi-level Inverter that is unbalance of capacitor voltages The voltage unbalance is occurred by the difference of each capacitor's charging and discharging time applied to Flying Capacitor Multi-level Inverter. It controls the variation of capacitor voltages into the mean'0' during some period by means of new carriers using the leg voltage redundancy in the Inverter. The solution can be easily expanded to the multi-level. Also this method can make the switching loss and conduction loss of device equal by the use of leg voltage redundancy. First the unbalance of capacitor voltage is analyzed and the conventional theory of self-balance using phase-shifted carrier is reviewed. And then the new method that is suitable to the Flying Capacitor Inverter is explained. The simulation results would be shown to verify the proposed method

  • PDF

Auxiliary Resonant Commutated Leg Snubber Linked 3-Level 3-Phase Voltage Source Soft-Switching Inverter

  • Yamamoto, Masayoshi;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • This paper presents a performance analysis in steady-state of a novel type Auxiliary Resonant Commutation Snubber-linked 3-level 3-phase voltage source soft switching inverter suitable and acceptable for high-power applications in comparison with other three types of 3-level 3-phase voltage source soft switching inverters. This soft switching inverter operation which can operate under a condition of Zero Voltage Switching (ZVS). The practical steady -state performances of this inverter are illustrated and evaluated on the basis of the experimental results.

A Study on about Implementation to Microwave Oven that Load Turbo Inverter algorithm (터보 인버터 알고리즘을 탑재한 전자레인지 구현에 관한 연구)

  • Lee, Min-Ki;Koh, Kang-Hoon;Kwon, Soon-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.205-207
    • /
    • 2001
  • In response to this inverter microwave oven has been developed to improve high speed cooking time & energy saving performance. The voltage resonating inverter has a defect in switching element that works at 5 or 6times higher than input voltage. Especially, it is very difficult to choose the switching device is very high for the 220 (V) commercial voltage. In this paper, it is proposed the optimum method to realize the turbo 1200(W) output power for microwave oven that is employed the 900(V) IGBT with decreasing operating voltage of the switching component by making the 220(V), 1000(W) inverter through the active clamp voltage resonating inverter.

  • PDF

A Cost Effective DC Link Variable Inverter Using 2-Switch Buck-Boost Converter (2-스위치 Buck-Boost 컨버터를 이용한 DC 링크 전압 가변형 인버터 설계)

  • Kang, Hyun-Soo;Kim, Jun-Hyung;Lee, Byoung-Kuk;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.950-959
    • /
    • 2009
  • In this paper, a dc link voltage variable inverter system is proposed, which consists of a two-switch buck-boost converter and a four-switch inverter. In addition, as the current and torque ripples are generated by a voltage difference between back EMF and dc link voltage, these ripples could be reduced according to the controlled dc-link voltage according to the motor speed. The validity of the proposed inverter is verified by informative simulation and experimental results.