• 제목/요약/키워드: Voltage inverter

검색결과 2,922건 처리시간 0.042초

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

비정현 계통 전압하에서 단상 인버터의 PLL 성능 개선 방법 (A Method to Improve the Performance of Phase-Locked Loop (PLL) for a Single-Phase Inverter Under the Non-Sinusoidal Grid Voltage Conditions)

  • 칸 레이안;최우진
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.231-239
    • /
    • 2018
  • The phase-locked loop (PLL) is widely used in grid-tie inverter applications to achieve a synchronization between the inverter and the grid. However, its performance deteriorates when the grid voltage is not purely sinusoidal due to the harmonics and the frequency deviation. Therefore, a high-performance PLL must be designed for single-phase inverter applications to guarantee the quality of the inverter output. This paper proposes a simple method that can improve the performance of the PLL for the single-phase inverter under a non-sinusoidal grid voltage condition. The proposed PLL can accurately estimate the fundamental frequency and theta component of the grid voltage even in the presence of harmonic components. In addition, its transient response is fast enough to track a grid voltage within two cycles of the fundamental frequency. The effectiveness of the proposed PLL is confirmed through the PSIM simulation and experiments.

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

Design of the High Frequency Resonant Inverter for Corona Surface Processes

  • Choi, Chul-Yong;Lee, Dae-Sik
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.119-122
    • /
    • 2005
  • A algorithm for control and performance of a pulse-density-modulated (PDM) series-resonant voltage source inverter developed for corona-dischange precesses is presented. The PDM inverter produces either a square-wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant dc voltage and operating frequency. Moreover it can achieve zero-current-switching (ZCS) and zero-voltage-switching (ZVS) in all the operating condition for a reduction of switching lost. Even though the corona discharge load with a strong nonlinear characteristics, new high frequency resonant inverter is shown the wide range power control from 5% to 100%.

  • PDF

A New Z-Source Inverter Topology with High Voltage Boost Ability

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.714-723
    • /
    • 2012
  • A new Z-source inverter (ZSI) topology is developed to improve voltage boost ability. The proposed topology is modified from the switched inductor topology by adding some more inductors and diodes into inductor branch to the conventional Z-source network. The modulation methods developed for the conventional ZSI can be easily utilized in the proposed ZSI. The proposed ZSI has an ability to obtain a higher voltage boost ratio compared with the conventional ZSI under the same shoot-through duty ratio. Since a smaller shoot-through duty ratio is required for high voltage boost, the proposed ZSI is able to reduce the voltage stress on Z-source capacitor and inverter-bridge. Theoretical analysis and operating principle of the proposed topology are explicitly described. In addition, the design guideline of the proposed Z-source network as well as the PWM control method to achieve the desired voltage boost factor is also analyzed in detail. The improved performances are validated by both simulation and experiment.

Voltage Sag 보상을 위한 종속 승압형 인버터 시스템 (Cascaded Boost Type Inverter System for Compensation of Voltage Sag)

  • 이승용;서영민;김명수;홍순찬
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.352-353
    • /
    • 2011
  • This paper proposes a cascaded boost type inverter system to compensate the voltage sag. If the voltage sag has appeared in input voltage, a cascaded boost converter would be operated to compensate voltage sag. The output voltage is kept constant by a direct-quadrature frame controller in the single-phase PWM inverter. The validity of proposed system is verified by simulation on the 300W cascaded boost type inverter system.

  • PDF

공간전압벡터 PWM을 이용한 컨버터/인버터 시스템에서의 커먼 모드 전압 펄스 제거 (Elimination of a Common Mode Voltage Pulse in Converter/Inverter System Modifying Space-Vector PWM Method)

  • 이현동;이영민;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권2호
    • /
    • pp.89-96
    • /
    • 1999
  • This paper proposes a common-mode voltage reduction method base on SVPWM(Space-Vector Pulsewidth Modulation) in three phase PWM converter/inverter system. By shifting the active voltage vector of inverter and aligning this to the active vector of converter, it is possible to eliminate a common-mode voltage pulse in one control period. Since the proposed PWM method maintains the active voltage vector, it does not affect the control performance of PWM converter/inverter system. Without any extra hardware, overall common mode voltage dv/dt and conrresponding leakage current can be reduced to two-third of the conventional three phase symmetric SVPWM scheme.

  • PDF

전력 디커플링 기능을 가진 단상 계통연계 전압형 인버터 (Single Phase Grid Connected Voltage-ed Inverter Utilizing a Power Decoupling Function)

  • 이상욱;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.236-241
    • /
    • 2017
  • This paper presents a single-phase grid connected voltage-ed inverter with a power decoupling circuit. In the single-phase grid connected voltage-ed inverter, it is well known that a power pulsation with twice the grid frequency is contained in the input power. In a conventional voltage type inverter, electrolytic capacitors with large capacitance have been used in order to smooth the DC voltage. However, lifetime of those capacitors is shortened by the power pulsation with twice grid frequency. The authors have been studied a active power decoupling(APD) method that reduce the pulsating power on the input DC bus line, this enables to transfer the ripple energy appeared on the input DC capacitors into the energy in a small film capacitor on the additional circuit. Hence, extension of the lifetime of the inverter can be expected because the small film capacitor substitutes for the large electrolytic capacitors. Finally, simulation and experimental results are discussed.

There-Phase Voltage-Source Soft-Switching Inverter with Auxiliary High Frequency Transformer Linked Power Regeneration Resonant Snubbers

  • Hattori, Hiroshi;Nakaoka, Mutsuo;Sakamoto, Kenji
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a prototype of the auxiliary resonant commutated snubber circuit(ARCS) with a high frequency transformer power regeneration loop is described for voltage source type sinewave inverter system. This is a new soft switching topology developed for three phase voltage source soft-switching inverter, active power filter and reactive power compensator has significant advantage of current rating reduction for auxiliary active switching devices. In addition, this paper presents a novel prototype of voltage-source soft switching space vector-modulated inverter with ARCS mentioned above, which is more suitable and acceptable for high-power utility interactive power conditioning, along with a digital control scheme. The steady-state operating analysis of ARCS has the remarkable features and the practical design procedure of this resonant snubber are illustrated on the basis of computer simulation analysis. The operating performance evaluations in the steady-state of this three phase voltage source soft switching inverter are discussed and compared with the three phase voltage source hard switching inverter.

  • PDF

소규모 계통연계형 태양광 시스템의 최적제어에 대한 연구 (Research about most suitable control of small scale system link type photovoltaic system)

  • 황락훈;장은성;남우영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.238-243
    • /
    • 2003
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. The output power of solar cell is DC, therefore it is necessary to install an inverter among electric power converts. The inverter have to supply a sinusoidal current and voltage to the load and the interactive utility line. In the paper, the proposes a photovoltaic system designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical dropping character. The single phase PWM voltage source inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power, from 10 to $20\%$. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

  • PDF