• Title/Summary/Keyword: Voltage gain control

Search Result 277, Processing Time 0.027 seconds

Design of Digital Automatic Gain Controller for the High-speed Processing (고속 동작을 위한 디지털 자동 이득 제어기 설계)

  • 이봉근;이영호;강봉순
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.71-76
    • /
    • 2001
  • In this paper we propose the Digital Automatic Gain Controller for IEEE 802.11a-High-speed Physical Layer in the 5 GHz Band. The input gain it estimated by calculating the energy of the training symbol that it a synchronizing signal. The renewal gain is calculated by comparing the estimated gain with the ideal gain. The renewal gain is converted into the controlled voltage for GCA to reduce or amplify the input signals. We used a piecewise-linear approximation to reduce the hardware size. The gain control is performed seven times to provide more accurate gain control. The proposed automatic gain controller is designed with VHDL and verified by using the Xilinx FPGA.

  • PDF

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.

High Frequency Dual Mode Control LLC Resonant Converter with Wide Input Voltage Range (넓은 입력전압범위의 고주파수 구동 Dual mode control LLC 공진형 컨버터)

  • Joo, Hyung-Ik;Yang, Jung-Woo;Jo, Kang-Ta;Han, Sang-Kyoo;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • In this paper, a high-frequency dual mode control LLC resonant converter with wide input voltage range is proposed through zero voltage switching (ZVS) under the universal line input voltage and every load conditions. Conventional small power adapter driving should be satisfied with universal line input voltage because it has no power factor correction circuit regulation. The conventional LLC resonant converter for an adapter can reduce the size of transformer in terms of high-frequency driving and ZVS. However, this converter has a disadvantage in terms of design of resonant tank under various input voltages because the frequency modulation range is very wide to satisfy voltage conversion gain. Compared with the conventional one, the proposed LLC converter can be adapted to universal line input voltage and high-frequency driving because it is controlled by pulse width modulation and pulse frequency modulation with control voltage. The validity of the proposed LLC converter is proved through the 60 W prototype.

The Effects of ${\gamma}-rays$ on Power Devices

  • Lho, Young-Hwan;Kim, Ki-Yup;Cho, Kyoung-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2287-2290
    • /
    • 2003
  • The electrical characteristics of power devices such as BJT (Bipolar Junction Transistor), and MOSFET (Metal Oxide Field Effect Transistor), etc, are altered due to impinging photon radiation and temperature in the nuclear or the space environment. In this paper, BJT and MOSFET are the two devices subjected to ${\gamma}$ radiation. In the case of BJT, the current gain (${\beta}$) and the collector to Emiter breakdown voltage ($V_{CEO}$) are the two main parameters considered. When it was subjected to ${\gamma}$ rays, the ${\beta}$ decreases as the dose level increases, whereas, $V_{CEO}$ gradually increases as the dose level increases. In the case of MOSFET, the threshold voltage is decreasing as the dose level increases. Here it has been observed the decent rate is an increasing function of the threshold voltage. The on-resistance does not change with respect to the dose. Both the devices recover back the original specification after the annealing is finished. No permanent damage has been occurred.

  • PDF

Design of Digital Automatic Gain Controller for the IEEE 802-11a Physical Layer (고속 무선 LAN을 위한 디지털 자동 이득 제어기 설계)

  • 이봉근;이영호;강봉순
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.101-104
    • /
    • 2001
  • In this paper, we propose the Digital Automatic Gain Controller for IEEE 802.11a High-speed Physical Layer in the 5 GHz Band. The input gain is estimated by calculating the energy of the training symbol that is a synchronizing signal. The renewal gain is calculated by comparing the estimated gain with the ideal gain. The renewal gain is converted into the controlled voltage for GCA to reduce or amplify the input signals. We used a piecewise-linear approximation to reduce the hardware size. The gain control is performed seven times to provide more accurate gain control. The proposed automatic gain controller is designed with VHDL and verified by using the Xilinx FPGA.

  • PDF

A Study on 120Hz Output Voltage Ripple Reduction of LLC Converter using Resonant Controller (공진 제어기를 이용한 LLC 컨버터의 출력전압 120Hz 맥동저감에 관한 연구)

  • So, Byong-Chul;Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Hwang, Soon-Sang;Choi, Eun-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • This paper proposes a new method to reduce 120Hz output voltage ripple of LLC converter using resonant voltage controller. This method can reduce the 120Hz output voltage ripple with very high gain at this frequency by the resonant controller with previous PI voltage controller. The reason why the voltage ripple can be reduced is explained by the Bode diagram comparing with the previous PI controller. The simulation with Matlab/Simulink is carried out for this resonant controller and the simulation results show that resonant controller can reduce the 120Hz output voltage ripple. Experiments with DSP controller also carried out and the experimental results also show that the usefulness of the proposed voltage controller.

A Distributed Control Method based on Voltage Sensitivity Matrix in DC Microgrids for Improvement of Power Sharing Accuracy and Voltage Regulation Performance (직류 마이크로그리드의 전력 공유 정확도 및 전압 제어 성능 향상을 위한 전압 민감도 행렬 기반의 분산 제어 방법)

  • Lee, Gi-Young;Ko, Byoung-Sun;Lee, Jae-Suk;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • A distributed control method is proposed to improve the power sharing performance of bidirectional distributed generators and the voltage regulation performance of a DC bus in a DC microgrid. Voltage sensitivity analysis based on power flow analysis is conducted to analyze the structural characteristics of a DC microgrid. A distributed control method using a voltage sensitivity matrix is proposed on the basis of this analysis. The proposed method uses information received through the communication system and performs the droop gain variation method and voltage shift method without additional PI controllers. This approach achieves improved power sharing and voltage regulation performance without output transient states. The proposed method is implemented through a laboratory-scaled experimental system consisting of two bidirectional distributed generators, namely, a load and a non-dispatchable distributed generator in a four-bus ring-type model. The experimental results show improved power sharing accuracy and voltage regulation performance.

The Control of an Electrostrictive Polymer Actuator by Using Neural Network

  • Youn, Ji-Won;Jeon, Jae-Wook;Nam, Jae-Do;Park, Hyoukryeol;Kim, Hunmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.4-120
    • /
    • 2002
  • $\textbullet$ In order to operate EP actuator, high voltage is applied to that. $\textbullet$ Our previous control algorithm for an EP actuator was PI method with constant gain. $\textbullet$ But this Control method is limitation such as rising time, steady-state error, and settling time. $\textbullet$ A neural network algorithm is proposed for improvement of performance. $\textbullet$ To do this, neural network algorithm changes the gain of PI control. $\textbullet$ In order to efficient drive EP actuator, the gain is changed at some point. $\textbullet$ Neural network method improve the performance of operation.

  • PDF

Optimal Control Design-based Gain Selection of an LCL-filtered Grid-connected Inverter in State-Space under Distorted Grid Environment

  • Tran, Vi-Thuy;Yoon, Seung-Jin;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.344-345
    • /
    • 2018
  • In order to alleviate the negative impacts of harmonically distorted grid condition on grid-connect inverters, an optimal control design-based gain selection scheme of an LCL-filtered grid-connected inverter and its ability to compensate selective harmonics are presented in this paper. By incorporating resonant terms into the control structure in the state-space to provide infinity gain at selected frequencies, the proposed control offers an excellent steady-state response even under distorted grid voltage. The proposed control scheme is achieved by using a state feedback controller for stabilization purpose and by augmenting the resonant terms as well as intergral term into a control structure for reference tracking and harmonic compensation. Furthermore, the optimal linear quadratic control approach is adopted for choosing an optimal feedback gain to ensure an asymptotic stability of the whole system. A discrete-time full state observer is also introduced into the proposed control scheme for the purpose of reducing a total number of sensors used in the inverter system. The simulation results are given to prove the effectiveness and validity of the proposed control scheme.

  • PDF

Non-Isolated High Gain Bidirectional Modular DC-DC Converter with Unipolar and Bipolar Structure for DC Networks Interconnections

  • Sun, Lejia;Zhuo, Fang;Wang, Feng;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1357-1368
    • /
    • 2018
  • In this paper, a novel high gain bidirectional modular dc-dc converter (BMC) with unipolar and bipolar structures for dc network interconnections is proposed. When compared with traditional dc grid-connecting converters, the proposed converter can achieve a high voltage gain with a simple modular transformerless structure. A sub-modular structure for the BMC is proposed to eliminate the unbalanced current stress between the different power units (levels) in the BMC. This can realize current sharing and standardized production and assembling. In addition, phase-interval operation is introduced to the sub-modules to realize low voltage and current ripple in both sides of the converter. Furthermore, two types of bipolar topologies of the sub-modular BMC were proposed to extend its application in bipolar dc network connections. In addition, the control system was optimized for grid-connection applications by providing various control strategies. Finally, simulations of a 3-level unipolar sub-modular BMC and a 4-level bipolar sub-modular BMC were conducted, and a 1-kW experimental 3-level unipolar prototype was developed to verify the effectiveness of the proposed converter.