• Title/Summary/Keyword: Voltage drop compensation

Search Result 81, Processing Time 0.024 seconds

Improved Performance of SVPWM Inverter Based on Novel Dead Time and Voltage Drop Compensation (새로운 데드타임 및 전압강하의 보상을 이용한 SVPWM 인버터의 성능개선)

  • Lee, Dong-Hui;Gwon, Yeong-An
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.618-625
    • /
    • 2000
  • Recently PWM inverters are widely utilized for many industrial applications e.g. high performance motor drive and PWM techniques are newly developed for an accurate output voltage. Among them space voltage vector PWM(SVPWM) inverter has high voltage ratio and low harmonics compared to the conventional sinusoidal PWM inverter. However output voltage of PWM inverter is distorted and has error duet o the conducting voltage drop of switching devices and the dead time that is inevitable to prevent the shoot-through phenomenon. This paper investigates 3-phase SVPWM inverter which has a new compensation method against dead time and voltage drop. Proposed algorithm calculates gate pulse periods which directly compensates the dead time and nonlinear voltage drop without modification of reference voltages. Direct compensation of gate pulse periods produces exact output voltage and does not need additional circuits. The propose algorithm is verified through the simulation and experiments.

  • PDF

A Study on Voltage Drop Compensation by STATCOM Considering Dynamic Characteristics of the 3-Phase Induction Motor in Electric Railway Systems (전기철도 3상유도전동기의 기동특성을 고려한 STATCOM에 의한 전압강하 보상에 관한연구)

  • Hwang, Sung-Ho;Oh, Min-Hyuk;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.337-339
    • /
    • 2005
  • The purpose of this paper is to compensate the voltage drop of the power system in the AC High-Speed Railway (HSR). Reactive power compensation is often the most effective way to improve system voltage drop. The suitable modeling of the electric railway system should be applied to the EMTP. the dynamic characteristics of 3-Phase Induction Motor in Electric Railway Systems is considered for precise modeling. it is shown through EMTP simulation that voltage drop can be compensated effectively by STATCOM.

  • PDF

Voltage Drop and Power Factor Compensation Relation of Induction Motor applied to Logistics System (물류 시스템 적용 유도전동기의 전압강하와 역률 보상 관계)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.155-159
    • /
    • 2018
  • Recently, the expansion or establishment of facilities for the logistics system is increasing. Conveyor facilities play a major role in sorting and transporting logistics. Induction motors are widely used for the operation of these conveyor systems. In the logistics system, a large number of induction motors are used. These motors have a considerable distance from the power source side and have a low power factor. The installation position for the power factor compensation of the induction motor is very important. Since the voltage drop depends on the length of the line, it is an important parameter in capacitor capacity determination for power factor compensation. The capacity of the capacitors installed to compensate the power factor of the inductive load should be designed to the extent that self-excitation does not occur. In this study, we analyze the method of compensating the proper power factor considering the voltage drop and the installation position of the induction motor in the logistics system.

Regenerative Inverter System for DC Traction Substation with Voltage Drop Compensation Mode (전압강하 보상모드를 갖는 직류 지하철용 회생인버터 시스템)

  • Kim, Jun-Gu;Kim, Jae-Hyung;Cho, Kee-Hyun;Won, Chung-Yuen;Kim, Yong-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2008
  • In this paper, the regenerative inverter system with voltage drop compensation mode is proposed. When the main rectifier is broken, the DC traction can not be supplied the power from the utility. Actually, the reserve rectifier is mounted in the substation to prevent this accident. In this paper, the voltage drop compensation mode is added to the regenerative inverter system in order to substitute the reserve rectifier. The proposed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system. We demonstrated the effectiveness of the proposed control algorithm by using computer simulation.

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

Voltage Control of ULTC and Distributed Generations in Distribution System (분산전원이 연계된 배전계통에서 ULTC와 분산전원의 전압제어)

  • Jeon, Jae-Geun;Won, Dong-Jun;Kim, Tae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2206-2214
    • /
    • 2011
  • LDC(Line Drop Compensation) is widely used in controlling ULTC(Under Load Tap Changer) output voltage at distribution substation. However, LDC may experience some difficulties in voltage control due to renewable energy resources and distributed generations. Therefore, more advanced voltage control algorithm is necessary to deal with these problems. In this paper, a modified voltage control algorithm for ULTC and DG is suggested. ULTC is operated with the voltages measured at various points in distribution system and prevents overvoltage and undervoltage in the distribution feeders. Reactive power controller in DG compensates the voltage drop in each distribution feeders. By these algorithms, the voltage unbalance between feeders and voltage limit violation will be reduced and the voltage profile in each feeder will become more flat.

A Study of Voltage Drop Compensation Algorithm using Moving Average (Moving Average를 이용한 전압강하보상 알고리즘에 관한 연구)

  • Kim S.H.;Kim J.S.;Kim Y.J.;Kim Y.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1202-1204
    • /
    • 2004
  • This paper propose the control algorithm for improving the power quality through the voltage compensation when source voltage is dropped. The algorithm signified occurrence of voltage drop in source voltage of each phase storing source voltage for two cycles using the concept of moving average and using the source voltage of last half cycle. If there are voltage drops in the source voltages, series active power filter compensates the differences between reference waveform and source voltage waveform. Therefore, voltage drop is compensated. It proposed series active power filter of three phases three lines to apply to the proposed algorithm and the presented experiment results verified logicality and effectiveness of the proposed algorithm.

  • PDF

A Study on control realization of FACTS equipment in Electric Railway Systems using EMTP MODELS (EMTP MODELS를 이용한 전기철도 FACTS 설비의 제어 구현 연구)

  • Oh, Min-Hyuk;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.329-330
    • /
    • 2006
  • The purpose of this paper is to compensate the voltage drop of the power system in the AC Electric Railway Systems. Reactive power compensation is often the most effective way to improve system voltage drop. The suitable modeling of the electric railway system should be applied to the EMTP. the dynamic characteristics of 3-Phase Induction Motor in Electric Railway Systems is considered for precise modeling. it is shown through EMTP simulation using EMTP MODELS that voltage drop can be compensated effectively by STATCOM.

  • PDF

Recent Progress on Voltage Drop Compensation in Top Emission Organic Light Emitting Diodes (OLED)

  • Jeong, Byoung-Seong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The voltage drop due to the thin cathode film at the large size top emission OLED panel was successfully compensated with making electrical contact between thin cathode and anode auxiliary electrode by 355nm wavelength of laser. It was found that the luminance uniformity dramatically increased from around 15% to more than 80% through this electrical compensation between thin cathode and anode auxiliary electrode. Moreover, the removing process for EL materials on the anode auxiliary electrode process by laser was very reliable and stable. Therefore, it is thought that the EL removal method using laser to make electrical contacts is very appropriate to mass production for such a large size top emission OLEDs to obtain high uniformity of luminance.

A Study on Instantaneous Voltage Compensation of UPS using on Ultracapacitor (울트라커패시터를 이용한 UPS의 순시전압보상에 관한 연구)

  • Kim, Choon-Sam;Kim, Ji-Heon;Kim, Soo-Hong;Sung, Won-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposed UPS system parallel connected in battery and ultracapacitor to compensate instantaneous voltage drop. Ultracapacitor parallel connected with battery compensate instantaneous voltage drop at failure and it's reduced the voltage regulation of output voltage. We are produced for fast instantaneous voltage drop compensation of ultracapacitor at UPS system and experiments are achieved. Experimental result was verified that the ultracapacitor indicated the fast compensation characteristics and regulation of the output voltage satisfied within 5[%] by using ultracapacitor.